K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 6 2021

a) Ta có: \(\angle ABO+\angle ACO=90+90=180\Rightarrow ABOC\) nội tiếp 

Lại có: \(\angle AIO=\angle ABO=90\Rightarrow ABIO\) nội tiếp

\(\Rightarrow A,B,I,O,C\) cùng thuộc 1 đường tròn

\(\Rightarrow ABIC\) nội tiếp 

\(\Rightarrow\angle AIB=\angle ACB=\angle ABC\) (\(\Delta ABC\) cân tại A) \(=\angle AIC\)

\(\Rightarrow IA\) là phân giác \(\angle CIB\)

b) Xét \(\Delta ABM\) và \(\Delta ANB:\) Ta có: \(\left\{{}\begin{matrix}\angle ABM=\angle ANB\\\angle NABchung\end{matrix}\right.\)

\(\Rightarrow\Delta ABM\sim\Delta ANB\left(g-g\right)\Rightarrow\dfrac{AB}{AN}=\dfrac{AM}{AB}\Rightarrow AB^2=AM.AN\)

mà \(AB^2=AH.AO\) (hệ thức lượng) \(\Rightarrow AH.AO=AM.AN\)

\(\Rightarrow\dfrac{AH}{AM}=\dfrac{AN}{AO}\)

Xét \(\Delta AHM\) và \(\Delta ANO:\) Ta có: \(\left\{{}\begin{matrix}\dfrac{AH}{AM}=\dfrac{AN}{AO}\\\angle NAOchung\end{matrix}\right.\)

\(\Rightarrow\Delta AHM\sim\Delta ANO\left(c-g-c\right)\Rightarrow\angle AHM=\angle ANO\)

\(\Rightarrow MHON\) nội tiếp \(\Rightarrow H\in\left(OMN\right)\)undefined

a: Xét tứ giác ABOC có

\(\widehat{ABO}+\widehat{ACO}=180^0\)

Do đó: ABOC là tứ giác nội tiếp

hay A,B,O,C cùng thuộc một đường tròn(1)

Xét tứ giác OIAC có 

\(\widehat{OIA}+\widehat{OCA}=180^0\)

Do đó: OIAC là tứ giác nội tiếp

hay O,I,A,C cùng thuộc một đường tròn(2)

Từ (1) và (2) suy ra A,B,O,I,C cùng thuộc một đường tròn

b: Xét (O) có 

AB là tiếp tuyến

AC là tiếp tuyến

Do đó: AB=AC
hay A nằm trên đường trung trực của BC(3)

Ta có: OB=OC

nên O nằm trên đường trung trực của BC(4)

Từ (3) và (4) suy ra OA⊥BC(5)

Xét (O) có

ΔBCD nội tiếp

BD là đường kính

Do đó: ΔBCD vuông tại C

hay BC⊥CD(6)

Từ (5) và (6) suy ra CD//OA

1: Xét ΔOBC có 

OH là đường cao

OH là đường trung tuyến

Do đó: ΔOCB cân tại O

hay C thuộc đường tròn(O)

Xét ΔOBA và ΔOCA có 

OB=OC

AB=AC

OA chung

Do đó: ΔOBA=ΔOCA

Suy ra: \(\widehat{OBA}=\widehat{OCA}=90^0\)

hay AC là tiếp tuyến của (O)

2: Xét ΔABM và ΔANB có 

\(\widehat{ABM}=\widehat{ANB}\)

\(\widehat{BAM}\) chung

Do đó: ΔABM\(\sim\)ΔANB

Suy ra: AB/AN=AM/AB

hay \(AB^2=AM\cdot AN\left(1\right)\)

Xét ΔOBA vuông tại B có BH là đường cao

nên \(AH\cdot AO=AB^2\left(2\right)\)

Từ (1) và (2) suy ra \(AM\cdot AN=AH\cdot AO\)

a) Xét ΔOMN có OM=ON(=R)

nên ΔOMN cân tại O(Định nghĩa tam giác cân)

Ta có: ΔOMN cân tại O(cmt)

mà OE là đường trung tuyến ứng với cạnh đáy MN(E là trung điểm của MN)

nên OE là đường cao ứng với cạnh MN(Định lí tam giác cân)

hay OE⊥MN tại E

Xét tứ giác AEOC có 

\(\widehat{OEA}\) và \(\widehat{OCA}\) là hai góc đối

\(\widehat{OEA}+\widehat{OCA}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: AEOC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

hay A,O,E,C cùng nằm trên 1 đường tròn(đpcm)

6 tháng 6 2021

do I là trung điểm của MN

⇒I là trung trực của MN

⇒I⊥MN

⇒∠OIM=90⇔∠OIA=90

xét tứ giác ABIO có ∠OBA=∠OIA=90

⇒ABIO nội tiếp 

⇒∠BIA=∠AOB (cùng chắn \(\stackrel\frown{AB}\)(1)

xét tứ giác ACOI có ∠OIA=∠OCA=90

⇒ACOI nội tiếp

⇒∠AIC=∠AOC (cùng chắn \(\stackrel\frown{AC}\)) (2)

xét tứ giác ABOC nội tiếp đường tròn ; AB=AC

⇒∠AOB=∠AOC (chắn 2 cung = nhau) (3)

từ (1);(2);(3) ⇒∠BIA=∠AIC

⇒IA là tia phân giác ∠BIC

23 tháng 4 2023

 gọi E là giao điểm OA với đường tròn 

OE vuông góc BC => E là điểm chính giữa cung BC =>sđEC=sđEB

xét đường tròn (O) có MKC là góc tạo bởi tiếp tuyến và dây 

MKC=(sdCM-sdMB)/2=(sdCE+sdEM-sdMB)/2

=(sdEB+sdEM-sdMB)/2=(sdEM+sdEM)/2

=2.sdEM/2=sd EM

mà EOM=sdEM (góc ở tâm chắn cung EM )

=>MKC=EOM=>MKH=HOM

Mà 2 góc này cùng chắn HM=>tứ giác MHOK nội tiếp

=>OMK=OHK 

tiếp tuyến AB và AC cắt nhau tại A =>OA là phân giác COB

mà tg COB cân (OB=OC=R)=>OA đồng thời là đường cao

=>OA vuông góc với BC=>OHK=90=>OMK=90

=>tgOMK vuông=>đpcm

1: góc ABO+góc ACO=180 độ

=>ABOC nội tiếp

2: Xét ΔABM và ΔANB có

góc ABM=góc ANB

góc BAM chung

=>ΔABM đồng dạng với ΔANB

=>AB/AN=AM/AB

=>AB^2=AN*AM