từ điểm A ở ngoài đường tròn O , vẽ 2 tiếp tuyến AB , AC và cát tuyến AMN với đường tròn ( B,C là tiếp tuyến AM<AN và tia AM nắm giữa 2 tai AB,AO) gọi I là hình chiếu của O trên AN , H là giao điểm của OA và BC
a/ IA là tia phân giác của góc BIC
B/ điểm H thuộc đường tròn ngoại tiếp tam giác OMN
thank
a) Ta có: \(\angle ABO+\angle ACO=90+90=180\Rightarrow ABOC\) nội tiếp
Lại có: \(\angle AIO=\angle ABO=90\Rightarrow ABIO\) nội tiếp
\(\Rightarrow A,B,I,O,C\) cùng thuộc 1 đường tròn
\(\Rightarrow ABIC\) nội tiếp
\(\Rightarrow\angle AIB=\angle ACB=\angle ABC\) (\(\Delta ABC\) cân tại A) \(=\angle AIC\)
\(\Rightarrow IA\) là phân giác \(\angle CIB\)
b) Xét \(\Delta ABM\) và \(\Delta ANB:\) Ta có: \(\left\{{}\begin{matrix}\angle ABM=\angle ANB\\\angle NABchung\end{matrix}\right.\)
\(\Rightarrow\Delta ABM\sim\Delta ANB\left(g-g\right)\Rightarrow\dfrac{AB}{AN}=\dfrac{AM}{AB}\Rightarrow AB^2=AM.AN\)
mà \(AB^2=AH.AO\) (hệ thức lượng) \(\Rightarrow AH.AO=AM.AN\)
\(\Rightarrow\dfrac{AH}{AM}=\dfrac{AN}{AO}\)
Xét \(\Delta AHM\) và \(\Delta ANO:\) Ta có: \(\left\{{}\begin{matrix}\dfrac{AH}{AM}=\dfrac{AN}{AO}\\\angle NAOchung\end{matrix}\right.\)
\(\Rightarrow\Delta AHM\sim\Delta ANO\left(c-g-c\right)\Rightarrow\angle AHM=\angle ANO\)
\(\Rightarrow MHON\) nội tiếp \(\Rightarrow H\in\left(OMN\right)\)