Cho A= 3+32+33+...+32015+32016
a) Tính tổng
b) Tìm chữ số tận cùng của A
c) A có là số chính phương không ? Vì sao ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có:
A=3+32+33+...+32015+32016A=3+32+33+...+32015+32016
⇒3A=3(3+32+33+...+32015+32016)⇒3A=3(3+32+33+...+32015+32016)
⇒3A=32+33+34+...+32016+32017⇒3A=32+33+34+...+32016+32017
⇒3A−A=(32+33+...+32017)−(3+32+...+32016)⇒3A−A=(32+33+...+32017)−(3+32+...+32016)
⇒2A=32017−3⇒A=32017−32⇒2A=32017−3⇒A=32017−32
Vậy A=32017−32A=32017−32
b) Ta có:
A=3+32+33+...+32015+32016A=3+32+33+...+32015+32016
=(3+32+33+34)+...+(32013+32014+32015+32016)=(3+32+33+34)+...+(32013+32014+32015+32016)
=3(1+3+32+33)+...+32013(1+3+32+33)=3(1+3+32+33)+...+32013(1+3+32+33)
=3.40+...+32013.40=40(3+...+32013)=3.40+...+32013.40=40(3+...+32013)
Vậy A có chữ số tận cùng là 0
c) Dễ thấy:
AA chia hết cho 33
AA không chia hết cho 3232
Mà 33 là số nguyên tố
Nên A không là số chính phương
Đức Hiệp Tùng
Số tận cùng 1 thì số chính phương cũng tận cùng 1
Số tận cùng 2 thì số chính phương cũng tận cùng là 4
Số tận cùng 3 thì số chính phương cũng tận cùng là 9
Số tận cùng 4 thì số chính phương cũng tận cùng là 6
Số tận cùng 5 thì số chính phương cũng tận cùng là 5
Số tận cùng 6 thì số chính phương cũng tận cùng là 6
Số tận cùng 7 thì số chính phương cũng tận cùng là 9
Số tận cùng 8 thì số chính phương cũng tận cùng là 4
Số tận cùng 9 thì số chính phương cũng tận cùng là 1
Vì vậy nên số chính phương ko có tận cùng 2,3,7,8
a)
Tận cùng của a | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
Tận cùng của a2 | 0 | 1 | 4 | 9 | 6 | 5 | 6 | 9 | 4 | 1 |
Vậy số chính phương a2 không thể tận cùng bởi 2 , 3 , 7 , 8 ;
b)
11.13.15.17 tận cùng bởi 5 nên 11.13.15.17 + 23 tận cùng bởi 8 , do đó tổng không là số chính phương.
15.16.17.18 tận cùng bởi 0 nên 15,16,17,18 - 38 tận cùng bởi 2,do đó hiệu không là số chính phương.
A = 1 + 3 + 3 2 + 3 3 + . . . + 3 30
3 A = 3 + 3 2 + 3 3 + . . . + 3 30 + 3 31
2A = 3A – A = ( 3 + 3 2 + 3 3 + . . . + 3 30 + 3 31 ) – ( 1 + 3 + 3 2 + 3 3 + . . . + 3 30 )
2A = 3 31 - 1
A = 3 31 - 1 2
Ta có 3 1 = 3 ; 3 3 = 9 ; 3 3 = 27 ; 3 4 = 81 ; 3 5 = 243
với n ≥ 0 thì 3 4 n + 3 có chữ số tận cùng là 7.Vì 31 = 4.7 + 3 nên 3 31 có chữ số tận cùng là 7. Do đó 3 31 - 1 2 có chữ số tận cùng là 3. Mà không có số nào bình phương lên có chữ số tận cùng là 3 nên A không là số chính phương.
Tìm chữ số tận cùng của A, từ đó suy ra A không phải số chính phương
a ) Nhân cả hai vế của A với 3 ta được :
3A = 3 ( 3 + 32 + 33 + ..... + 32015 + 32016 )
= 32 + 33 + 34 + ..... + 32016 + 32017 ( 1 )
Trừ cả hai vế của ( 1 ) cho A ta được :
3A - A = ( 32 + 33 + 34 + ..... + 32016 + 32017 ) - ( 3 + 32 + 33 + ..... + 32015 + 32016 )
2A = 32 + 33 + 34 + ..... + 32016 + 32017 - 3 - 32 - 33 - .....- 32015 - 32016
2A = 32017 - 3 => A = \(\frac{3\left(3^{2016}-1\right)}{2}\)
b ) Ta có : 32016 = ( 32 )1008 = 91008
Vì 92n có chữ số tận cùng là 1 => 91008 có chữ số tận cùng là 1
=> 32016 có chữ số tận cùng là 1
=> 32016 - 1 có chữ số tận cùng là 0
=> 3 ( 32016 - 1 ) có chữ số tận cùng là 0
=> \(\frac{3\left(3^{2016}-1\right)}{2}\) có chữ số tân cùng là 5
c ) chịu
A= 3 + 32 + 33 + ... + 32016
3A= 32 + 33 + ... + 32016 + 32017
3a-a= 32017 - 3
2a= 32017 - 3
a= (32017 - 3) : 2
a, 3A = 32 + 33 + 34 +...+ 32016 + 32017
3A - A = 2A = ( 32+ 33 + 34 +...+ 32016 + 32017) - (3+ 32 + 33 +...+ 32015 + 32016)
2A = 32+ 33 + 34 +...+ 32016 + 32017 - 3- 32 - 33 -...- 32015 - 32016
2A = 32017 - 3
2A = 3(32016 - 1)
A = 1,5 ( 32016 -1)
Mình không chắc câu c) ,do dạng này mới học.
a) \(3A=3^2+3^3+3^4+...+3^{2017}\)
\(3A-A=2A=3^{2017}-3\Rightarrow A=\frac{3^{2017}-3}{2}\)
b)Ta có: \(3^{2017}=3^{4.504+1}=3^{4k+1}=\left(...3\right)\)
Nên A tận cùng là: \(\frac{\left(...3\right)-3}{2}=\frac{\left(..0\right)}{2}=..0\)
c) \(A=\frac{3^{2017}-3}{2}=\frac{3}{2}\left(3^{2016}-1\right)\)
Nên A là số chính phương thì \(3^{2016}-1=\frac{3}{2}k^2\)
Khi đó \(A=\frac{9}{4}k^2\Rightarrow k^2=\frac{3^{2017}-3}{2}:\frac{9}{4}=\frac{4\left(3^{2017}-3\right)}{18}\)
Do 18 không phải là số chính phương nên A không phải là số chính phương (do quy tắc \(\left(\frac{a}{b}\right)^2=\frac{a^2}{b^2}\)khi đó để A là số chính phương thì cả tử và mẫu đề là số chính phương,ta chỉ cần xét 1 trong 2.)
a.Số tận cùng 1 thì số chính phương cũng tận cùng
Số tận cùng 2 thì số chình phương cũng tận cùng là 4
Số tận cùng 3 thì số chình phương cũng tận cùng là 9
Số tận cùng 4 thì số chình phương cũng tận cùng là 6
Số tận cùng 5 thì số chình phương cũng tận cùng là 5
Số tận cùng 6 thì số chình phương cũng tận cùng là 6
Số tận cùng 7 thì số chình phương cũng tận cùng là 9
Số tận cùng8 thì số chình phương cũng tận cùng là 4
Số tận cùng 9 thì số chình phương cũng tận cùng là 1
Vì vậy nên số chính phương ko có tận cùng 2,3,7,8
k nhak chỉ đúng một bài thôi nhưng hết sức rồi ủng hộ giùm đi ^_^
Ta có: A = \(3+3^2+3^3+...+3^{2015}+3^{2016}\)
a) \(3A=3^2+3^3+...+3^{2016}+3^{2017}\)
\(3A-A=3^{2017}-3\)
\(2A=3^{2017}-3\)
Suy ra \(A=\frac{3^{2017}-3}{2}\)
b) \(3A=3^2+3^3+...+3^{2016}+3^{2017}\)
\(3A-A=3^{2017}-1\)
\(2A=3^{2017}-1\)
Sau đó bạn tự giải tiếp phần b)
c) Ta có: \(3;3^2;3^3;...;3^{2015};3^{2016}⋮3\Rightarrow A⋮3\)
Mà \(3⋮̸3^2\). Suy ra A không chia hết cho 32
Ta lại có: A chia hết cho 3 nhưng không chia hết cho 32
Vì thế A không phải là số chính phương
tính 3A
XONG LẤY 3A-A
LÀ RA
LM ĐC MÀ MIK K CÓ THỜI GIAN NÊN CHỈ GIÚP BN ĐC THẾ