tìm số nguyên dương n để \(\frac{n-23}{n=89}\) là bình phương 1 số hữu tỉ dương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt: \(\frac{\left(n-23\right)}{n+89}=\frac{a^2}{b^2}\)(với a,b là 2 số nguyên dương và (a,b)=1)).
Gọi d=(n-23,n+89)\(\Rightarrow n+89-\left(n-23\right)=112⋮d\). Do đó d chỉ có thể có các ước nguyên tố là 2 và 7.
Nếu d chia hết cho 7 thì: Đặt n=7k+2 ( với k là số nguyên dương). Suy ra: \(\frac{\left(n-23\right)}{n+89}=\frac{7k-21}{7k+91}=\frac{k-3}{k+13}\).
Đến đây xét vài trường hợp nữa bài này có dạng tìm k biết \(k+a,k+b\) đều là số chính phương.
Ta có :
\(10\le n\le99\)
\(\Rightarrow21\le2n+1\le201\)
\(\Rightarrow2n+1\) là số chính phương lẻ (1)
\(\Rightarrow2n+1\in\left\{25;49;81;121;169\right\}\)
\(\Rightarrow n\in\left\{12;24;40;60;84\right\}\)
\(\Rightarrow3n+1\in\left\{37;73;121;181;253\right\}\left(2\right)\)
\(\left(1\right),\left(2\right)\Rightarrow\dfrac{2n+1}{3n+1}=\dfrac{2.40+1}{3.40+1}=\dfrac{81}{121}=\left(\dfrac{9}{11}\right)^2\left(n=40\right)\)
\(\Rightarrow dpcm\)
\(\Rightarrow n=40⋮40\Rightarrow dpcm\)
Lời giải:
Để $\frac{3n+9}{n-4}$ là số hữu tỉ dương thì có 2 TH xảy ra:
TH1:
\(\left\{\begin{matrix} 3n+9>0\\ n-4>0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} n>-3\\ n>4\end{matrix}\right.\Leftrightarrow n>4\)
TH2:
\(\left\{\begin{matrix} 3n+9< 0\\ n-4< 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} n< -3\\ n< 4\end{matrix}\right.\Leftrightarrow n< -3\)
Đặt \(n^4+n^3+n^2+n+1=a^2\)
\(\Rightarrow4\left(n^4+n^3+n^2+n+1\right)=\left(2a\right)^2\)
Mà ta có : \(\left[n\left(2n+1\right)\right]^2< \left(2a\right)^2< \left[n\left(2n+1\right)+2\right]^2\)
\(\Rightarrow4a^2=\left[n\left(2n+1\right)+1\right]^2\Rightarrow n=3\)thỏa mãn đề bài.
a)\(n-3\ne0\Leftrightarrow n\ne3\)
b)\(n-3>0\Leftrightarrow n>3\)
c)\(n-3< 0\Leftrightarrow n< 3\)
Giả sử: 2n+3n+4n=a2
=>2n+3n=a2-22n=(a-2n)(a+2n)
=> a-2n=1=> a=2n+1 và a+2n=2n+3n=> a =3n
=>2n+1=3n=>n=1 và a =3
Vậy n =1
nhầm là n+89