tgiac MNP có MD là tia p/g góc M, MN=8cm, MP=12cm
a) tính tỉ số DN/DP
b0 DN=6cm, DP=?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, ta có md là tia phân giác của góc M⇒
\(\dfrac{ND}{DP}=\dfrac{MN}{MP}=\dfrac{8}{12}\Rightarrow\dfrac{ND}{DP}=\dfrac{8}{12}=\dfrac{2}{3}\Rightarrow\dfrac{ND}{ND+DP}=\dfrac{2}{2+3}\Rightarrow\dfrac{ND}{NP}=\dfrac{2}{5}\)
Vì \(MD\) là tia phân giác góc \(M\left( {D \in NP} \right)\) nên theo tính chất đường phân giác ta có:
\(\frac{{DN}}{{DP}} = \frac{{MN}}{{MP}};\frac{{DN}}{{MN}} = \frac{{DP}}{{MP}};\frac{{DP}}{{DN}} = \frac{{MP}}{{MN}};\frac{{DP}}{{MP}} = \frac{{DN}}{{MN}}\)
a: Xét ΔHNM vuông tại H và ΔMNP vuông tại M có
góc N chung
Do đó: ΔHNM\(\sim\)ΔMNP
b: \(NP=\sqrt{6^2+8^2}=10\left(cm\right)\)
\(MH=\dfrac{MN\cdot MP}{NP}=4.8\left(cm\right)\)
\(HN=\dfrac{MN^2}{NP}=3.6\left(cm\right)\)
=>HP=6,4(cm)
a) Xét ΔMNP có MD là đường phân giác ứng với cạnh NP(gt)
nên \(\frac{ND}{NM}=\frac{DP}{PM}\)
\(\Leftrightarrow\frac{ND}{8}=\frac{7.5}{10}\)
hay \(ND=\frac{7.5\cdot8}{10}=\frac{60}{10}=6cm\)
Vậy: ND=6cm
b) Xét ΔMNP có DC//MP(gt)
nên \(\frac{NC}{CM}=\frac{ND}{DP}\)
\(\Leftrightarrow\frac{NC}{CM}=\frac{6}{7.5}\)
hay \(\frac{NC}{6}=\frac{CM}{7.5}\)
Ta có: NC+CM=MN=8cm(C nằm giữa N và M)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\frac{NC}{6}=\frac{CM}{7.5}=\frac{NC+CM}{6+7.5}=\frac{NM}{13.5}=\frac{8}{13.5}=\frac{16}{27}\)
Do đó: \(\frac{NC}{6}=\frac{16}{27}\)
\(\Leftrightarrow NC=\frac{16\cdot6}{27}=\frac{96}{27}=\frac{32}{9}\simeq3.55cm\)
Vậy: NC\(\simeq\)3,55cm
a) Xét\(\Delta FEPvà\Delta DEMcó\)
EF=ED(giả thiết)
\(\widehat{FEP}=\widehat{DEM}\) ( 2 góc đối đỉnh )
EP=EM ( vì E là trung điểm của PM)
\(\Rightarrow\Delta FEP=\Delta DEM\left(c-g-c\right)\)
\(\Rightarrow\widehat{PFE}=\widehat{MDE}\) ( 2 góc tương ứng)
hay \(\widehat{PFD}=\widehat{MDF}\) mà 2 góc này là 2 góc so le trong của đường thẳng FD cắt 2 đường thẳng FP và MD
\(\Rightarrow FP//MD\)
vậy \(FP//MD\)
b) ta có \(\Delta FEP=\Delta DEM\) (chứng minh câu a)
\(\Rightarrow FD=DM\) ( 2 cạnh tương ứng )
mà MD=ND (vì D là trung điểm của MN )
\(\Rightarrow DN=FP\)
vậy DN=FP
c) nối F và N
ta có \(MD//FP\) \(hay\) \(MN//FP\Rightarrow\widehat{PFN}=\widehat{DNF}\) ( 2 góc so le trong )
Xét\(\Delta PFNvà\Delta DNFcó\)
PF=DN (chứng minh câu b )
\(\widehat{PFN}=\widehat{DNF}\) (chứng minh trên )
FN là cạnh chung
\(\Rightarrow\Delta PFN=\Delta DNF\left(c-g-c\right)\)
\(\Rightarrow DF=NP\) ;
\(\widehat{DFN}=\widehat{PNF}\) mà 2 góc này là 2 góc so le trong của đường thẳng FN cắt 2 đường thẳng FD và NP
\(\Rightarrow FD//NP\)
vậy FD//NP
a) \(\Delta MNP\)có \(MD\)là phân giác \(\widehat{M}\), áp dụng tính chất đường phân giác trong tam giác ta có:
\(\frac{DN}{MN}=\frac{DP}{MP}\) \(\Rightarrow\) \(\frac{DN}{DP}=\frac{MN}{MP}\)
hay \(\frac{DN}{DP}=\frac{8}{12}=\frac{2}{3}\)
b) \(\frac{DN}{DP}=\frac{2}{3}\)
hay \(\frac{6}{DP}=\frac{2}{3}\)
\(\Rightarrow\) \(DP=\frac{6.3}{2}=9\)