Cho a,b,c>0. Chứng minh rằng :(a^3)/b+(b^3)/c+(c^3)/a >=a^2+b^2+c^2
Giải giùm mig với, mig cần gấp lắm!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài này cũng dễ
Chuyển hết qua 1 vế ta được
a^2+4b^2+3c^2–2a–12b–6c >0
<=> (a–1)^2+(2b–3)^2+3(c–1)^2 >0
Vì bất đẳng thức cuối đúng
Nên cái đề
a chia hết cho b => a=k.b, k thuộc Z
b chia hết cho c => b=m.c, m thuộc Z
Suy ra: a=k.b=k.m.c chia hết cho c
Xét x=-1 =>P(-1)=a.(-1)2-1b+c=a-b+c
Thay a-b+c=0 vào P(1)=>P(-1)=0
=>-1 là nghiệm của đa thức P(x) (điều phải chứng minh)
\(2\left(a^4+b^4\right)\ge\left(a+b\right)\left(a^3+b^3\right)\)
\(\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)(đúng)
\(2\left(a^4+b^4\right)\ge\left(a+b\right)\left(a^3+b^3\right)\)
Mà: \(a+b\ge2\)
\(\Rightarrow2\left(a^4+b^4\right)\ge\left(a+b\right)\left(a^3+b^3\right)\ge2\left(a^3+b^3\right)\)
\(\Rightarrow a^4+b^4\ge a^3+b^3\)
=> ĐPCM
tịt ??????????????????????????????????????????????????______________________?????????????????????????????????????????????
Đề sai
Thầy mig đưa đề z á bạn