Tìm số nguyên n khác 2 để \(\frac{2n-1}{n-2}\)
là số nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=(2n-4)/(n-2)+4/(n-2)=2+4/(n-2)
De A co gia tri nguyen thi n-2 la U(4)
Suy ra n-2 co the nhan cac gia tri -4;-2;-1;1;2;4
Suy ra n co the nhan cac gia tri -2;0;1;3;4;6(thoa man n thuoc Z;n khac 2)
ta có \(\frac{2n-1}{n-2}=\frac{2\left(n-2\right)+3}{n-2}=\frac{2\left(n-2\right)}{n-2}+\frac{3}{n-2}=2+\frac{3}{n-2}.\)
để 2n-1/n-2 là số nguyên thì \(2+\frac{3}{n-2}\varepsilonℤ\)mà \(2\varepsilonℤ\)nên \(\frac{3}{n-2}\varepsilonℤ\)hay \(3⋮n-2\Rightarrow n-2\varepsilonƯ\left(3\right)\)
Mà Ư(3)=\(\left\{\pm1;\pm3\right\}\)
TA CÓ BẢNG
n-2 | -3 | -1 | 1 | 3 |
n | -1 | 1 | 3 | 5 |
vậy với \(n\varepsilon\left\{-1;1;3;5\right\}thì...\)
Ta có:
\(\frac{2n-1}{n-2}\in Z\)
\(\Rightarrow\)\(2n-1\)\(⋮\)\(n-2\)
\(\Rightarrow\)\(2n-4+3\)\(⋮\)\(n-2\)
\(\Rightarrow\)\(2\left(n-2\right)+3\)\(⋮\)\(n-2\)
\(\Rightarrow\)\(3\)\(⋮\)\(n-2\)
\(\Rightarrow\)\(n-2\in U\left(3\right)=\left\{\pm1;\pm3\right\}\)
Ta có bảng tính gt sau:
\(n-2\) | \(-3\) | \(-1\) | \(1\) | \(3\) |
\(n\) | \(-1\) | \(1\) | \(3\) | \(5\) |
NX | Chọn | Chọn | Chọn | Chọn |
Vậy\(n\in\left\{\pm1;3;5\right\}\)
a ) để F thuộc Z
=> \(\frac{n+10}{2n-8}\)thuộc Z
=> n + 10 \(⋮\)2n - 8
=> 2 . ( n + 10 ) \(⋮\)2n - 8
=> 2n + 20 \(⋮\)2n - 8
=> 2n - 8 + 28 \(⋮\)2n - 8 mà 2n - 8 \(⋮\)2n - 8 => 28 \(⋮\)2n - 8
=> 2n - 8 thuộc Ư ( 28 ) = { - 28 ; - 14 ; - 7 ; - 4 ; - 2 ; - 1 ; 1 ; 2 ; 4 ; 7 ; 14 ; 28 }
=> n thuộc { - 10 ; - 3 ; 2 ; 3 ; 5 ;6 ; 11 ; 18 }
Bài 2:
a: Để E là số nguyên thì \(3n+5⋮n+7\)
\(\Leftrightarrow3n+21-16⋮n+7\)
\(\Leftrightarrow n+7\in\left\{1;-1;2;-2;4;-4;8;-8;16;-16\right\}\)
hay \(n\in\left\{-6;-8;-5;-9;-3;-11;1;-15;9;-23\right\}\)
b: Để F là số nguyên thì \(2n+9⋮n-5\)
\(\Leftrightarrow2n-10+19⋮n-5\)
\(\Leftrightarrow n-5\in\left\{1;-1;19;-19\right\}\)
hay \(n\in\left\{6;4;29;-14\right\}\)
a) để x nguyên
=>13 chia hết n+2
=>n+2= 1 hoặc -1 hoặc -13 hoặc 13
=>n= -1 hoặc -3 hoặc -15 hoặc 11
Ta có: Q = \(\frac{n^2-1}{2n-1}\)
=> 4Q = \(\frac{4n^2-4}{2n-1}=\frac{2n\left(n-1\right)+\left(2n-1\right)-3}{2n-1}=2n+1-\frac{3}{2n-1}\)
Để Q \(\in\)Z <=> 4Q \(\in\)Z <=> 3 \(⋮\)2n - 1
<=> 2n - 1 \(\in\)Ư(3) = {1; -1; 3; -3}
<=> n \(\in\){1; 0; 2; -1}
Gọi 2n-1/n-2 là A
Để A nhận giá trị nguyên thì:
- n thuộc Z
- n-2 khác 0
- (2n-1) chia hết cho (n-2) (b)
Từ (b) => [2(n-2)+3] chia hết cho (n-2)
Thấy 2(n-2) chia hết cho (n-2)
=> 3 chia hết cho n-2
=> n-2 thuộc Ư(3)={-3;-1;1;3}
=> n-2 thuộc {-3;-1;1;3}
=> n thuộc {-1;1;3;5}
Vậy ...... :D