Tìm nghiệm của đa thức \(P\left(x\right)=||x+3|+5|-2023\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
P(x)=0 <=> ||x+3|+5|-2023 = 0
<=> ||x+3|+5| = 2023
<=>\(\left[\begin{array}{nghiempt}\left|x+3\right|+5=2023\\\left|x+3\right|+5=-2023\end{array}\right.\) <=> \(\left[\begin{array}{nghiempt}\left|x+3\right|=2018\\\left|x+3\right|=-2028\end{array}\right.\) <=> |x+3| = 2018 (vì |a| \(\ge\) 0)
<=> \(\left[\begin{array}{nghiempt}x+3=2018\\x+3=-2018\end{array}\right.\) <=> \(\left[\begin{array}{nghiempt}x=2015\\x=-2021\end{array}\right.\)
Vậy x1 = 2015 và x2 = -2021 là nghiệm của đa thức P(x)
a, Ta có : \(f\left(x\right)-g\left(x\right)=h\left(x\right)\)hay
\(4x^2+3x+1-3x^2+2x-1=h\left(x\right)\)
\(\Rightarrow h\left(x\right)=x^2+5x\)
b, Đặt \(h\left(x\right)=x^2+5x=0\Leftrightarrow x\left(x+5\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)
Vậy nghiệm của đa thức h(x) là x = -5 ; x = 0
Đặt \(k\left(x\right)=7x^2-35x+42=0\)
\(\Leftrightarrow7\left(x^2+5x+6\right)=0\)
\(\Leftrightarrow7\left(x^2+2x+3x+6\right)=0\Leftrightarrow7\left(x+2\right)\left(x+3\right)=0\Leftrightarrow\orbr{\begin{cases}x=-2\\x=-3\end{cases}}\)
Vậy nghiệm của đa thức k(x) là x = -3 ; x = -2
xin lỗi mọi người 1 tý nha cái phần c) ý ạ đề thì vậy như thế nhưng có cái ở phần biểu thức ở dưới ý là
\(\left(\frac{3^2}{6}-81\right)^3\) chuyển thành \(\left(\frac{3^3}{6}81\right)^3\)
bị sai mỗi thế thôi ạ mọi người giúp em với ạ
a: (2x-3/2)(|x|-5)=0
=>2x-3/2=0 hoặc |x|-5=0
=>x=3/4 hoặc |x|=5
=>\(x\in\left\{\dfrac{3}{4};5;-5\right\}\)
b: x-8x^4=0
=>x(1-8x^3)=0
=>x=0 hoặc 1-8x^3=0
=>x=1/2 hoặc x=0
c: x^2-(4x+x^2)-5=0
=>x^2-4x-x^2-5=0
=>-4x-5=0
=>x=-5/4
\(f\left(x\right)=\left(x-1\right)\left(x-3\right)=0\)
\(\Rightarrow\hept{\begin{cases}x-1=0\\x-3=0\end{cases}}\Rightarrow\hept{\begin{cases}x-1\\x-3\end{cases}}\)
=> x = 1 và x = 3 là nghiệm của đa thức f(x)
Mà nghiệm của đa thức f(x) cũng là nghiệm của đa thức g(x)
=> nghiệm của đa thức g(x) là x = { 1; 3 }
Với x = 1 thì \(g\left(x\right)=1^3-a.1^2+b.1-3=0\)
\(\Rightarrow-a+b=2\)(1)
Với x = 3 thì \(g\left(x\right)=3^3-a.3^2+3b-3=0\)
\(\Rightarrow3a-b=8\)(2)
Cộng vế với vế của (1) và (2) ta được : ( - a + b ) + (3a - b) = 10
=> 2a = 10 => a = 5
=> - 5 + b = 2 => b = 7
Vậy a = 5 ; b = 7
(x-1)(x-3)=0
=>x-1=0 hoặc x-3=0
=>x=1 hoặc x=3
Vậy nghiệm của f(x) là 1 và 3
Nghiệm của g(x) cũng là 1 và 3
Với x=1 ta có g(x)=1+a+b-3=0
=>a+b-2=0
a+b=2
Với x=3 ta có g(x)=27-9a+3b-3=0
=>24-9a+3b=0
=>8-3a+b=0
=>3a-b=8
a=\(\frac{8+b}{3}\)
Vậy với a+b=2 hoặc \(a=\frac{8+a}{3}\) thì nghiệm của đa thức f(x) cũng là nghiệm của g(x)
a, Ta có : \(M\left(x\right)=P\left(x\right)+Q\left(x\right)=5x^3-4x+7-5x^3-x^2+4x-5\)
\(=-x^2+2\)
\(N\left(x\right)=P\left(x\right)-Q\left(x\right)=5x^3-4x+7+5x^3+x^2-4x+5\)
\(=10x^3+x^2-8x+12\)
b, Đặt \(M\left(x\right)+2=0\Rightarrow-x^2+2+2=0\Leftrightarrow4-x^2=0\)
\(\Leftrightarrow x^2=4\Leftrightarrow x=\pm2\)
Vậy tập nghiệm đa thức trên là S = { -2 ; 2 }
xét P(x)có nghiệm =>P(x)=0
<=>||x+3|+5|-2023=0
=>||x+3|+5|=2023
=>|x+3|+5=±2023
*)|x+3|+5=2023
=>|x+3|=2018
**)x+3=2018
=>x=2015
*)|x+3|+5=-2023
=>|x+3|=-2028
**)x+3=-2028
=>x=-2031
vậy x=-2031 và x=2015 là nghiệm của P(x)
\(\dfrac{1}{R\left(x\right)}=\dfrac{1}{x\left(x+2\right)}=\dfrac{1}{2}\left(\dfrac{1}{x}-\dfrac{1}{x+2}\right)\)
\(\Rightarrow S=\dfrac{1}{2}\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{4}-\dfrac{1}{6}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{2022}-\dfrac{1}{2024}+\dfrac{1}{2023}-\dfrac{1}{2025}\right)+\dfrac{1}{2.2023}\)
\(=\dfrac{1}{2}\left(\dfrac{1}{3}+\dfrac{1}{4}-\dfrac{1}{2024}-\dfrac{1}{2025}\right)+\dfrac{1}{2.2023}\)
Một kết quả rất xấu
\(P\left(x\right)=0\Leftrightarrow||x+3|+5|-2013=0\)
\(\Leftrightarrow||x+3|=2023\)
\(\Leftrightarrow\orbr{\begin{cases}\left|x+3\right|+5=2023\\\left|x+3\right|+5=-2023\end{cases}\Leftrightarrow\orbr{\begin{cases}\left|x+3\right|=2018\\\left|x+3\right|=-2028\end{cases}\Leftrightarrow}\left|x+3\right|=2018}\)( vì |a| \(\ge\)0)
\(\Leftrightarrow\orbr{\begin{cases}x+3=2018\\x+3=-2018\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=2015\\x=-2021\end{cases}}\)
Vậy \(x_1=2015\&x_2=-2021\)là nghiệm của đa thức P(x)
Thanks bạn nhiều nhiều nha!