Cho hình thang ABCD có góc A và góc D vuông AB=4cm AB=BC=2CD. Kẻ CH vuông góc với AB tại H
a, CM: tg AHC= tg CDA
b, So sánh AC va BC
c, Tính diện tích ABCD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔACD vuông tại A và ΔHAD vuông tại H có
góc D chung
=>ΔACD đồng dạng với ΔHAD
b: AC=căn 25^2-15^2=20cm
DH=15^2/25=9cm
=>HC=16cm
Xét tam giác \(ABD\)vuông tại \(A\):
\(BD^2=AB^2+AD^2\)(định lí Pythagore)
\(=4^2+10^2=116\)
\(\Rightarrow BD=\sqrt{116}=2\sqrt{29}\left(cm\right)\)
Lấy \(E\)thuộc \(CD\)sao cho \(AE\perp AC\)
Suy ra \(ABDE\)là hình bình hành.
\(AE=BD=2\sqrt{29}\left(cm\right),DE=AB=4\left(cm\right)\).
Xét tam giác \(AEC\)vuông tại \(A\)đường cao \(AD\):
\(\frac{1}{AD^2}=\frac{1}{AE^2}+\frac{1}{AC^2}\Leftrightarrow\frac{1}{AC^2}=\frac{1}{AD^2}-\frac{1}{AE^2}=\frac{1}{100}-\frac{1}{116}=\frac{1}{715}\)
\(\Rightarrow AC=\sqrt{715}\left(cm\right)\)
\(AE^2=ED.EC\Leftrightarrow EC=\frac{AE^2}{ED}=\frac{116}{4}=29\left(cm\right)\)suy ra \(DC=25\left(cm\right)\)
Hạ \(BH\perp CD\).
\(BC^2=HC^2+BH^2=21^2+10^2=541\Rightarrow BC=\sqrt{541}\left(cm\right)\)
\(S_{ABCD}=\left(AB+CD\right)\div2\times AD=\frac{4+25}{2}\times10=145\left(cm^2\right)\)
a) có : 2AD=2CD =>AD=CD
^A=^D=^AHC=90 độ =>hình vuông AHCD =>AH=HC=AD
Mà AB = 2AD =>tam giác ABC vuông tại C
tam giác ACD vuông cân tại D => ^ACD=45 độ =>^BCD=135 độ
Mà ^BCD + ^B = 180 độ => ^B = 45 độ