tìm x nguyên biết 4x+16/x+3 là số nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Điều kiện: \(x\ne2\)
Phân tích tử thức: \(x^4-16=\left(x^2\right)^2-4^2=\left(x^2-4\right)\left(x^2+4\right)=\left(x-2\right)\left(x+2\right)\left(x^2+4\right)\)
Phân tích mẫu thức: \(x^4-4x^3+8x^2-16x+16=\left(x^4-4x^3+4x^2\right)+\left(4x^2-16x+16\right)\)
\(=x^2\left(x^2-4x+4\right)+4\left(x^2-4x+4\right)=\left(x-2\right)^2\left(x^2+4\right)\)
Ta có: \(P=\frac{\left(x-2\right)\left(x+2\right)\left(x^2+4\right)}{\left(x-2\right)^2\left(x^2+4\right)}=\frac{x+2}{x-2}=\frac{\left(x-2\right)+4}{x-2}=1+\frac{4}{x-2}\)
Để P là số nguyên thì \(x-2\inƯ\left(4\right)\)
\(\Rightarrow x-2\in\left\{-4;-2;-1;1;2;4\right\}\)
\(\Rightarrow x\in\left\{-2;0;1;3;4;6\right\}\)
Điều kiện: x\ne2x̸=2
Phân tích tử thức: x^4-16=\left(x^2\right)^2-4^2=\left(x^2-4\right)\left(x^2+4\right)=\left(x-2\right)\left(x+2\right)\left(x^2+4\right)x4−16=(x2)2−42=(x2−4)(x2+4)=(x−2)(x+2)(x2+4)
Phân tích mẫu thức: x^4-4x^3+8x^2-16x+16=\left(x^4-4x^3+4x^2\right)+\left(4x^2-16x+16\right)x4−4x3+8x2−16x+16=(x4−4x3+4x2)+(4x2−16x+16)
=x^2\left(x^2-4x+4\right)+4\left(x^2-4x+4\right)=\left(x-2\right)^2\left(x^2+4\right)=x2(x2−4x+4)+4(x2−4x+4)=(x−2)2(x2+4)
Ta có: P=\frac{\left(x-2\right)\left(x+2\right)\left(x^2+4\right)}{\left(x-2\right)^2\left(x^2+4\right)}=\frac{x+2}{x-2}=\frac{\left(x-2\right)+4}{x-2}=1+\frac{4}{x-2}P=(x−2)2(x2+4)(x−2)(x+2)(x2+4)=x−2x+2=x−2(x−2)+4=1+x−24
Để P là số nguyên thì x-2\inƯ\left(4\right)x−2∈Ư(4)
\Rightarrow x-2\in\left\{-4;-2;-1;1;2;4\right\}⇒x−2∈{−4;−2;−1;1;2;4}
\Rightarrow x\in\left\{-2;0;1;3;4;6\right\}⇒x∈{−2;0;1;3;4;6}
=>4x-2+5 chia hết cho 2x-1
=>\(2x-1\in\left\{1;-1;5;-5\right\}\)
=>\(x\in\left\{1;0;3;-2\right\}\)
Ta có : A = \(\dfrac{x+2}{x-3}=\dfrac{x-3+5}{x-3}=\dfrac{x-3}{x-3}+\dfrac{5}{x-3}=1+\dfrac{5}{x-3}\)
Để A có giá trị nguyên thì :
\(\Rightarrow5⋮\left(x-3\right)\)
\(\Rightarrow\left(x-3\right)\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Ta có bảng sau:
x-3 | 1 | -1 | 5 | -5 |
x | 4 | 2 | 8 | -2 |
Vậy \(x\in\left\{4;2;8;-2\right\}\) thì A có giá trị nguyên
Bài B làm tương tự nhé bạn!
Cứ phân tích trên tử sao cho giống dưới mẫu là đc
Để \(\frac{4x+9}{6x+5}\)\(\in Z\)thì \(4x+9\)chia hết \(6x+5\)
\(\Rightarrow3.\left(4x+9\right)\)chia hết cho \(6x+5\)
\(\Rightarrow\)\(12x+27\)chia hết cho \(6x+5\)
\(\Rightarrow\)\(2.\left(6x+5\right)+17\)chia hết cho \(6x+5\)
\(\Rightarrow\)17 chia hết cho \(6x+5\)
\(\Rightarrow\)6x +5 thuộc Ư(17)
suy ra 6x+5 thuộc {+-1;+-17}
ĐẾN ĐÂY BẠN TỰ LẬP BẲNG TÌM X NHÉ
Vậy x thuộc{-1;2}
B)Tích đi mình làm tiếp cho
Có: 1/3+1/6+1/10+...+2/n(n+1)=2003/2004
=>1/2.[ 1/3+1/6+1/10+...+2/n(n+1)]=2003/2004.1/2
=>1/6+1/12+1/20+...+1/n.(n+1)=2003/2004.1/2
=>1/2.3+1/3.4+1/4.5+...+1/n.(n+1)=2003/2004.1/2
=>1/2-1/3+1/3-1/4+1/4-1/5+....+1/n-1/n+1=2003/2004.1/2
=>1/2-1/n+1=2003/4008
=>1/n+1=1/4008
=>n+1=4008
=>n=4007
Vậy n=4007
a: Để A là số nguyên thì
x^3-2x^2+4 chia hết cho x-2
=>\(x-2\in\left\{1;-1;2;-2;4;-4\right\}\)
=>\(x\in\left\{3;1;4;0;6;-2\right\}\)
b: Để B là số nguyên thì
\(3x^3-x^2-6x^2+2x+9x-3+2⋮3x-1\)
=>\(3x-1\in\left\{1;-1;2;-2\right\}\)
=>\(x\in\left\{\dfrac{2}{3};0;1;-\dfrac{1}{3}\right\}\)
Lời giải:
$x^2=4.4.4.4=16.16=(-16)(-16)=16^2=(-16)^2$
$\Rightarrow x=16$ hoặc $x=-16$.
Ta có: \(\frac{4x-16}{x+3}=\frac{4\left(x+3\right)-28}{x+3}=\frac{4\left(x+3\right)}{x+3}-\frac{28}{x+3}=4-\frac{28}{x+3}\)
Để biểu thức là số nguyên \(\Leftrightarrow28⋮\left(x+3\right)\Leftrightarrow x+3\inƯ\left(28\right)=\left\{\pm1;\pm2;\pm4;\pm7;\pm14;\pm28\right\}\)
Lập bảng:
Vậy ..............