1. Chứng minh rằng: \(3^2+3^3+3^4+...+3^{101} \) chia hết cho 120.
2. Chứng tỏ rằng bình phương của một số nguyên tố khác 2 và 3 khi chia cho 12 đều dư 1.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vì tất cả các số nguyên tố khác 2 đều là số lẻ mà số lẻ nhân số lẻ bằng số lẻ nên chúng chia cho 2 dư 1
Số chính phương khác 2 và 3 có dạng:\(6k+1,6k+5\)(k\(\in\)N*)
Nếu số đó có dạng \(6k+1\) thì \(\left(6k+1\right)^2=\left(6k\right)^2+2.6k.1+1=36k^2+12k+1\) chia 12 dư 1
Nếu số đó có dạng \(6k+5\) thì \(\left(6k+5\right)^2=\left(6k\right)^2+2.6k.5+5^2=36k^2+60k+25\) chia 12 dư 1
Vậy ta có điều phải chứng minh
Gọi số cần tìm là : \(a^2\left(a\ne2;3\right)\)
Do a là số nguyên tố khác 2
\(\Rightarrow a\) lẻ \(\Leftrightarrow a^2\) lẻ
\(\Rightarrow a^2:4\) dư 1
\(\Rightarrow\left(a^2-1\right)⋮4^{\left(1\right)}\)
Do a là số nguyên tố khác 3 nên a không chia hết cho 3 => \(a^2\) không chia hết cho 3
\(\Rightarrow a^2:3\) dư 1
\(\Rightarrow a^2-1⋮3^{\left(2\right)}\)
Từ (1) và \(\left(2\right)\Rightarrow\left(a^2-1\right)⋮3;4\) . Mà ta có 3 và 4 là hai số nguyên tố cùng nhau
\(\Rightarrow\left(a^2-1\right)⋮3.4\\ \Rightarrow\left(a^2-1\right)⋮12\)
\(\Rightarrow a^2:12\) dư 1
1. Chứng minh rằng: 3^2+3^3+3^4+...+3^101 chia hết cho 120.
Ta có:
A=3^2+3^3+3^4+...+3^101
= (3^2+3^3+3^4+3^5) + ( 3^6+3^7+3^8+3^9) +.... + ( 3^98 + 3^99 + 3^100 + 3^101)
= 3.(3+3^2+3^3+3^4) + 3^5.(3+3^2+3^3+3^4) +....+ 3^97.(3+3^2+3^3+3^4)
= 120.(3+3^5+...+3^97) chia hết cho 120
(đ.p.c.m)
:) câu 2 em chịu
=(3^2+3^3+3^4+3^5)+......+(3^98+3^99+3^100+3^101)
=3.(3+3^2+3^3+3^4)+.....+3^97.(3+3^2+..+3^4)
=3.120+.......+3^97.120
=120.(3+...+3^97) chia hết cho 120