K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 6 2018

Nếu có 1 thừa số bằng 0 thì biểu thức C bằng 0 Ngoài ra, a > 29 để đảm bảo các thừa số trong C phải là số tự nhiên, vì a>29 nên ta chỉ xét thừa số a -30 Ta có : a - 30 =0 suy ra a = 30 Vậy với a = 30 thì C đạt giá trị nhỏ nhất bằng 0. - Để C có giá trị lớn nhất thì vế phải phải nhận giá trị lớn nhất. Mà giá trị của a càng lớn thì giá trị của C càng lớn. => không tìm được giá trị a để C lớn nhất

25 tháng 4 2018

Nếu có 1 thừa số bằng 0 thì biểu thức C bằng 0
Ngoài ra, a > 29 để đảm bảo các thừa số trong C phải là số tự nhiên, vì a>29 nên ta chỉ xét thừa số a -30
Ta có : a - 30 =0 suy ra a = 30
Vậy với a = 30 thì C đạt giá trị nhỏ nhất bằng 0.

- Để C có giá trị lớn nhất thì vế phải phải nhận giá trị lớn nhất. 
Mà giá trị của a càng lớn thì giá trị của C càng lớn.
=> không tìm được giá trị a để C lớn nhất.

1 tháng 4 2016

\(A=\frac{2002-1998:\left(a-16\right)}{316+684:1}\)

đề thế này ak

8 tháng 4 2023

A = \(\dfrac{2x-1}{x+2}\) 

a, A là phân số ⇔ \(x\) + 2  # 0  ⇒ \(x\) # -2

b, Để A là một số nguyên thì 2\(x-1\) ⋮ \(x\) + 2 

                                          ⇒ 2\(x\) + 4 - 5 ⋮ \(x\) + 2

                                         ⇒ 2(\(x\) + 2) - 5 ⋮ \(x\) + 2

                                         ⇒ 5 ⋮ \(x\) + 2

                            ⇒ \(x\) + 2 \(\in\) { -5; -1; 1; 5}

                            ⇒  \(x\)   \(\in\) { -7; -3; -1; 3}

c, A = \(\dfrac{2x-1}{x+2}\) 

  A = 2 - \(\dfrac{5}{x+2}\)

Với \(x\) \(\in\) Z và \(x\) < -3 ta có

                     \(x\) + 2 < - 3 + 2 = -1

              ⇒  \(\dfrac{5}{x+2}\) > \(\dfrac{5}{-1}\)  = -5  ⇒ - \(\dfrac{5}{x+2}\)<  5

              ⇒ 2 - \(\dfrac{5}{x+2}\) < 2 + 5 = 7 ⇒ A < 7 (1)

Với \(x\)  > -3;  \(x\) # - 2; \(x\in\)  Z ⇒ \(x\) ≥ -1 ⇒ \(x\) + 2 ≥ -1 + 2 = 1

            \(\dfrac{5}{x+2}\) > 0  ⇒  - \(\dfrac{5}{x+2}\)  < 0 ⇒ 2 - \(\dfrac{5}{x+2}\) < 2 (2)

Với \(x=-3\) ⇒ A = 2 - \(\dfrac{5}{-3+2}\) = 7 (3)

Kết hợp (1); (2) và(3)  ta có A(max) = 7 ⇔ \(x\) = -3

 

                     

             

                                   

     

 

            

11 tháng 7 2023

a) \(A=\dfrac{3}{x-1}\)

Điều kiện \(|x-1|\ge0\)

\(\Rightarrow A=\dfrac{3}{x-1}\ge0\)

\(GTNN\left(A\right)=0\) \(\Rightarrow x-1=+\infty\Rightarrow x\rightarrow+\infty\)

b) \(GTLN\left(A\right)\) không có \(\left(A=\dfrac{3}{x-1}\ge0\right)\)

 

21 tháng 9

Biểu thức sau đâu em nhỉ?