K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2018

A=|x+1,5|-4>=-4

-Vậy: MIN A=-4 tại x+1,5=0=>x=-1,5

B=|x+1|+|y-1|+2>=2

-Vậy: MIN B=2 tại x=-1;y=1

1 tháng 9 2021

\(|-2x+1,5|=\dfrac{1}{4}\Rightarrow-2x+1,5=\pm\dfrac{1}{4}\)

\(-2x+1,5=\dfrac{1}{4}\Rightarrow-2x=1,5-0,25\Rightarrow-2x=1,25\Rightarrow x=1,25:\left(-2\right)\Rightarrow x=...\)

\(-2x+1,5=-\dfrac{1}{4}\Rightarrow-2x=-0,25-1,5\Rightarrow-2x=1,75\Rightarrow x=1,75:\left(-2\right)\Rightarrow x=...\)

1 tháng 9 2021

\(\dfrac{3}{2}-|1.\dfrac{1}{4}+3x|=\dfrac{1}{4}\Rightarrow|1.\dfrac{1}{4}+3x|=\dfrac{3}{2}-\dfrac{1}{4}\Rightarrow|1.\dfrac{1}{4}+3x|=\dfrac{5}{4}\)

\(\Rightarrow1.\dfrac{1}{4}+3x=\pm\dfrac{5}{4}\)

\(1.\dfrac{1}{4}+3x=\dfrac{5}{4}\Rightarrow\dfrac{1}{4}+3x=\dfrac{5}{4}\Rightarrow3x=\dfrac{5}{4}-\dfrac{1}{4}\Rightarrow3x=1\Rightarrow x=3\)

\(1.\dfrac{1}{4}+3x=-\dfrac{5}{4}\Rightarrow\dfrac{1}{4}+3x=-\dfrac{5}{4}\Rightarrow3x=-\dfrac{5}{4}-\dfrac{1}{4}\Rightarrow3x=-\dfrac{3}{2}x=...\)

22 tháng 12 2021

\(\Rightarrow\dfrac{2}{3}:x=\dfrac{5}{3}\Rightarrow x=\dfrac{2}{3}:\dfrac{5}{3}=\dfrac{2}{5}\)

22 tháng 12 2021

 

 

4 tháng 9 2021

a) \(\left|4x-1\right|-\left|3x-\dfrac{1}{2}\right|=0\\ \Leftrightarrow\left|4x-1\right|=\left|3x-\dfrac{1}{2}\right|\\ \Leftrightarrow\left[{}\begin{matrix}4x-1=3x-\dfrac{1}{2}\\4x-1=\dfrac{1}{2}-3x\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}4x-3x=1-\dfrac{1}{2}\\4x+3x=\dfrac{1}{2}+1\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\7x=\dfrac{3}{2}\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\dfrac{3}{14}\end{matrix}\right.\)

Vậy \(x\in\left\{\dfrac{1}{2};\dfrac{3}{14}\right\}\) là nghiệm của pt.

b) \(\left|x-1\right|-2x=\dfrac{1}{2}\\ \Leftrightarrow\left|x-1\right|=2x+\dfrac{1}{2}\left(ĐK:x\ge\dfrac{-1}{4}\right)\\ \Leftrightarrow\left[{}\begin{matrix}x-1=2x+\dfrac{1}{2}\\x-1=-2x-\dfrac{1}{2}\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x-2x=1+\dfrac{1}{2}\\x+2x=1-\dfrac{1}{2}\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}-x=\dfrac{3}{2}\\3x=\dfrac{1}{2}\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-3}{2}\left(ktmđk\right)\\x=\dfrac{1}{6}\left(tmđk\right)\end{matrix}\right.\)

Vậy \(x=\dfrac{1}{6}\) là nghiệm của pt.

AH
Akai Haruma
Giáo viên
4 tháng 9 2021

Lời giải:

a.

$|4x-1|-|3x-\frac{1}{2}|=0$

$\Leftrightarrow |4x-1|=|3x-\frac{1}{2}$

\(\Leftrightarrow \left[\begin{matrix} 4x-1=3x-\frac{1}{2}\\ 4x-1=\frac{1}{2}-3x\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=\frac{1}{2}\\ x=\frac{3}{14}\end{matrix}\right.\)

b. Nếu $x\geq 1$ thì:

$|x-1|-2x=\frac{1}{2}$

$\Leftrightarrow x-1-2x=\frac{1}{2}$
$\Leftrightarrow -x-1=\frac{1}{2}$

$\Leftrightarrow x=\frac{-3}{2}$ (vô lý vì $x\geq 1$)

Nếu $x< 1$ thì:

$1-x-2x=\frac{1}{2}$

$\Leftrightarrow x=\frac{1}{6}$ (tm)

 

4 tháng 8 2021

còn cách làm khác không ạ?

 

13 tháng 10 2016

\(\sqrt{x}+2\sqrt{1-x}\le\sqrt{\left(1+4\right)}=\sqrt{5}\)

Mà ta có điều kiện là \(0\le x\le1\)

=> E \(\ge1\)

Vậy GTLN là \(\sqrt{5}\)đạt được khi x = \(\frac{1}{5}\)

Đạt GTNN là 1 khi x = 1

23 tháng 1 2022

đk : x>= 1 

Q = \(\sqrt{x-1}-12\)

với \(x\ge1\Leftrightarrow x-1\ge0\Leftrightarrow\sqrt{x-1}\ge0\Leftrightarrow\sqrt{x-1}-12\ge12\)

Dấu ''='' xảy ra khi x = 1 

23 tháng 1 2022

\(\sqrt{x-1}-12\ge-12\)nhé 

AH
Akai Haruma
Giáo viên
24 tháng 7 2021

Lời giải:

$D=(x+1)(x^2-4)(x+5)+2014$

$=(x+1)(x+2)(x-2)(x+5)+2014$
$=(x^2+3x+2)(x^2+3x-10)+2014$

$=t(t-12)+2014$ (đặt $x^2+3x+2=t$)

$=t^2-12t+2014=(t-6)^2+1978$

$=(x^2+3x-4)^2+1978\geq 1978$

Vậy gtnn của biểu thức là $1978$. Giá trị này đạt tại $x^2+3x-4=0$

$\Leftrightarrow x=1$ hoặc $x=-4$

2 tháng 10 2023

a) Sửa đề: Tìm GTNN

A = |2x - 1| - 4

Ta có:

|2x - 1| ≥ 0 với mọi x ∈ R

⇒ |2x - 1| - 4 ≥ -4 với mọi x ∈ R

Vậy GTNN của A là -4 khi x = 1/2

b) B = 1,5 - |2 - x|

Ta có:

|2 - x| ≥ 0 với mọi x ∈ R

⇒ -|2 - x| ≤ 0 với mọi x ∈ R

⇒ 1,5 - |2 - x| ≤ 1,5 với mọi x ∈ R

Vậy GTLN của B là 1,5 khi x = 2

c) C = |x - 3| ≥ 0 với mọi x ∈ R

Vậy GTNM của C là 0 khi x = 3

d) D = 10 - 4|x - 2|

Ta có:

|x - 2| ≥ 0 với mọi x ∈ R

⇒ 4|x - 2| ≥ 0 với mọi x ∈ R

⇒ -4|x - 2| ≤ 0 với mọi x ∈ R

⇒ 10 - 4|x - 2| ≤ 10 với mọi x ∈ R

Vậy GTLN của D là 10 khi x = 2

1 tháng 9 2021

a = |2x-1/3|-7/4

   Do |2x-1/3| \(\ge\) 0

         |2x-1/3|-7/4 \(\ge\)  7/4 

Dấu = xảy ra <=> 2x-1/3=0. =>. x= 1/6

b    1/3|x-2|+2|3-1/2 y|+4

 Do |x-2| \(\ge\) 0

      |3-1/2y| \(\ge\) 0

   => 1/3|x-2|+2|3-1/2 y|+4 \(\ge\) 4

Dấu = xảy ra <=>\(\left\{{}\begin{matrix}x-2=0\\3-\dfrac{1}{2}y=0\end{matrix}\right.\)

<=>\(\left\{{}\begin{matrix}x=2\\y=6\end{matrix}\right.\)

a: Ta có: \(\left|2x-\dfrac{1}{3}\right|\ge0\forall x\)

\(\Leftrightarrow\left|2x-\dfrac{1}{3}\right|-\dfrac{7}{4}\ge-\dfrac{7}{4}\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{1}{6}\)

b: Ta có: \(\dfrac{1}{3}\left|x-2\right|\ge0\forall x\)

\(2\left|3-\dfrac{1}{2}y\right|\ge0\forall y\)

Do đó: \(\dfrac{1}{3}\left|x-2\right|+2\left|3-\dfrac{1}{2}y\right|\ge0\forall x,y\)

\(\Leftrightarrow\left|x-2\right|\cdot\dfrac{1}{3}+\left|3-\dfrac{1}{2}y\right|\cdot2+4\ge4\forall x,y\)

Dấu '=' xảy ra khi x=2 và y=6