So sánh A và B :
\(A=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{100}}\)
\(B=\dfrac{1}{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(3\cdot A=1+\dfrac{1}{3^1}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}\)
\(A=\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{100}}\)
Do đó:
\(3\cdot A-A=1+\dfrac{1}{3^1}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{100}}-\dfrac{1}{3}-\dfrac{1}{3^2}-...-\dfrac{1}{3^{100}}\)
hay \(2\cdot A=1-\dfrac{1}{3^{100}}\)
\(\Leftrightarrow A=\left(1-\dfrac{1}{3^{100}}\right):2\)
\(\Leftrightarrow A=\left(1-\dfrac{1}{3^{100}}\right)\cdot\dfrac{1}{2}\)
\(\Leftrightarrow A=\dfrac{1}{2}-\dfrac{1}{2\cdot3^{100}}< \dfrac{1}{2}\)
hay A<B
\(A=\dfrac{1}{3^1}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{2023}}\)
\(A=\dfrac{1}{3}.\left(1+\dfrac{1}{3^1}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{2022}}\right)\)
\(\Rightarrow3A=3.\dfrac{1}{3}.\left(1+\dfrac{1}{3^1}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{2022}}\right)\)
\(\Rightarrow3A=1+\dfrac{1}{3^1}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{2022}}\)
\(\Rightarrow3A-A=1+\dfrac{1}{3^1}+\dfrac{1}{3^2}+...\dfrac{1}{3^{2022}}-\left(\dfrac{1}{3^1}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{2023}}\right)\)
\(\Rightarrow2A=1+\dfrac{1}{3^1}+\dfrac{1}{3^2}+...\dfrac{1}{3^{2022}}-\dfrac{1}{3^1}-\dfrac{1}{3^2}-\dfrac{1}{3^3}-...\dfrac{1}{3^{2022}}-\dfrac{1}{3^{2023}}\)
\(\Rightarrow2A=1-\dfrac{1}{3^{2023}}\)
\(\Rightarrow A=\dfrac{1}{2}\left(1-\dfrac{1}{3^{2023}}\right)\)
\(\Rightarrow A=\dfrac{1}{2}-\dfrac{1}{2}.\dfrac{1}{3^{2023}}< \dfrac{1}{2}\)
\(B=\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{12}=\dfrac{4+3+1}{12}=\dfrac{8}{12}=\dfrac{2}{3}\)
mà \(\dfrac{2}{3}>\dfrac{1}{2}\) \(\left(\dfrac{2}{3}=\dfrac{4}{6}>\dfrac{1}{2}=\dfrac{3}{6}\right)\)
\(\Rightarrow A< B\)
A = \(\dfrac{1}{3}\)+ \(\dfrac{1}{3^2}\)+ \(\dfrac{1}{3^3}\)+............+\(\dfrac{1}{3^{2023}}\)
3A = 1+ \(\dfrac{1}{3}\) + \(\dfrac{1}{3^2}\) + \(\dfrac{1}{3^3}\)+...+\(\dfrac{1}{3^{2022}}\)
3A - A = 1 - \(\dfrac{1}{3^{2023}}\)
2A = 1 - \(\dfrac{1}{3^{2023}}\) < 1
B = \(\dfrac{1}{3}\) + \(\dfrac{1}{4}\)+ \(\dfrac{1}{12}\)
B = \(\dfrac{4}{12}\) + \(\dfrac{3}{12}\) + \(\dfrac{1}{12}\)
B = \(\dfrac{8}{12}\)
B = \(\dfrac{2}{3}\) ⇒ 2B = \(\dfrac{4}{3}\) > 1
2A < 2B ⇒ A < B
Lời giải:
$A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2022}}$
$3A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2021}}$
$\Rightarrow 3A-A=1-\frac{1}{3^{2022}}$
$\Rightarrow A=\frac{1}{2}-\frac{1}{2.3^{2022}}$
Xét hiệu:
$A-B=\frac{1}{2}-\frac{1}{2.3^{2022}}-(1-\frac{1}{3^{2021}})$
$=\frac{1}{3^{2021}}-\frac{1}{2.3^{2022}}-\frac{1}{2}$
$=\frac{5}{2.3^{2022}}-\frac{1}{2}$
$< \frac{1}{2}-\frac{1}{2}=0$
$\Rightarrow A< B$
a) \(A=2A-A\)
\(=2\left(\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2022}}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2022}}\right)\)
\(=1+\dfrac{1}{2}+...+\dfrac{1}{2^{2021}}-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2022}}\right)\)
\(=1-\dfrac{1}{2^{2022}}\)
b) \(B=\dfrac{20+15+12+17}{60}=\dfrac{4}{5}=1-\dfrac{1}{5}\)
\(A>B\left(Vì\left(\dfrac{1}{2^{2022}}< \dfrac{1}{5}\right)\right)\)
a) Ta có:
2A=2.(12+122+123+...+122020+122021)2�=2.12+122+123+...+122 020+122 021
2A=1+12+122+123+...+122019+1220202�=1+12+122+123+...+122 019+122 020
Suy ra: 2A−A=(1+12+122+123+...+122019+122020)2�−�=1+12+122+123+...+122 019+122 020
−(12+122+123+...+122020+122021)−12+122+123+...+122 020+122 021
Do đó A=1−122021<1�=1−122021<1.
Lại có B=13+14+15+1360=20+15+12+1360=6060=1�=13+14+15+1360=20+15+12+1360=6060=1.
Vậy A < B.
Ta có: \(A=\dfrac{1}{\sqrt{2}+1}+\dfrac{1}{\sqrt{3}+\sqrt{2}}+...+\dfrac{1}{\sqrt{120}+\sqrt{121}}\)
\(=-1+\sqrt{2}-\sqrt{2}+\sqrt{3}-...-\sqrt{120}+11\)
=10
Ta có: \(B=\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{35}}\)
\(=\dfrac{2}{\sqrt{1}+\sqrt{1}}+\dfrac{2}{\sqrt{2}+\sqrt{2}}+...+\dfrac{2}{\sqrt{35}+\sqrt{35}}\)
\(\Leftrightarrow B< 2\left(\dfrac{1}{\sqrt{1}+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+...+\dfrac{1}{\sqrt{35}+\sqrt{36}}\right)\)
\(\Leftrightarrow B< 2\cdot\left(-\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}-...-\dfrac{1}{\sqrt{35}}+\dfrac{1}{\sqrt{36}}\right)\)
\(\Leftrightarrow B< 2\cdot\left(-\dfrac{1}{1}+\dfrac{1}{6}\right)\)
\(\Leftrightarrow B< -\dfrac{5}{3}< 10=A\)
Ta có `3A=1+1/3+....+1/3^99`
`=>3A-A=1-1/3^100`
`=>2A=1-1/3^100`
`=>A=1/2-1/(2.3^100)<1/2`
Hay `A<B`