mbn giải giúp mk bài nèy:
abcd5=5.abcd
Tìm abcd
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 5 :
a, ĐKXĐ ; \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)
Ta có : \(P=1:\left(\dfrac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\dfrac{\sqrt{x}+1}{x+\sqrt{x}+1}-\dfrac{\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\)
\(=1:\left(\dfrac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\dfrac{x-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\dfrac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right)\)
\(=1:\left(\dfrac{x+2+x-1-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right)\)
\(=1:\left(\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right)\)
\(=\dfrac{x+\sqrt{x}+1}{\sqrt{x}}\)
b, - Xét \(P-3=\dfrac{x+\sqrt{x}+1-3\sqrt{x}}{\sqrt{x}}=\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}}>0\)
\(\Rightarrow P>3\)
\(P=1:\left(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}+1}{x+\sqrt{x}+1}-\dfrac{\sqrt{x}+1}{x-1}\right)\) (Đk:\(x\ge0;x\ne1\))
\(=1:\left[\dfrac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\dfrac{\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}+1\right)\left(x+\sqrt{x}+1\right)}-\dfrac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right]\)
\(=1:\left[\dfrac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\dfrac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right]\)
\(=1:\dfrac{x+2+x-1-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(=1:\dfrac{x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(=1:\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(=\dfrac{x+\sqrt{x}+1}{\sqrt{x}}=\sqrt{x}+1+\dfrac{1}{\sqrt{x}}\)
b) Áp dụng AM-GM có:
\(\sqrt{x}+\dfrac{1}{\sqrt{x}}\ge2\sqrt{\sqrt{x}.\dfrac{1}{\sqrt{x}}}=2\)
Dấu "=" xảy ra khi \(\sqrt{x}=\dfrac{1}{\sqrt{x}}\Leftrightarrow x=1\left(ktm\right)\)
\(\Rightarrow\)Dấu "=" không xảy ra
\(\Rightarrow\sqrt{x}+\dfrac{1}{\sqrt{x}}>2\)\(\Rightarrow\sqrt{x}+1+\dfrac{1}{\sqrt{x}}>3\)
hay P>3
Vậy...
1.
\(A+B+C=180^0\Rightarrow A=180^0-\left(B+C\right)=70^0\)
Kẻ đường cao BD
Trong tam giác vuông ABD:
\(cotA=\dfrac{AD}{BD}\Rightarrow AD=BD.cotA\)
Trong tam giác vuông BCD:
\(cotC=\dfrac{CD}{BD}\Rightarrow CD=BD.cotC\)
\(\Rightarrow AD+CD=BD.cotA+BD.cotC\)
\(\Rightarrow AC=BD.\left(cotA+cotC\right)\)
\(\Rightarrow BD=\dfrac{AC}{cotA+cotC}\)
\(\Rightarrow S_{ABC}=\dfrac{1}{2}BD.AC=\dfrac{1}{2}.\dfrac{AC^2}{cotA+cotC}=\dfrac{35^2}{2\left(cot70^0+cot50^0\right)}\approx509,1\left(cm^2\right)\)
Thước hình a):
GHĐ:10 cm; ĐCNN:0,5 cm(Vì ta lấy 2 số bất kì là 10 và 9,10 - 9 = 1, 1:2=0,5)
Thước Hình b):
GHĐ:10 cm; ĐCNN:0,1 cm(Vì ta lấy 2 số bất kì là 10 và 9,10 - 9 = 1, 1:10=0,1)
tick mình nha!
Ta có :
Gọi số cần tìm là : abcd
=> abcd5=5.1abcd
=> a.10000+b.1000+c.100+d.10+5=5.(10000+a.1000+b.100+ c.10+d.1)
=> a.10000+b.1000+c.100+d.10+5=50000+a.5000+b.500+c.5 0+d.5
=> a.5000+b.500+c.50+d.5+5=50000
=> 5.(a.1000+b.100+c.10+d+1)=50000
=> a.1000+b.100+c.10+d+1=50000:5
=> a.1000+b.100+c.10+d+1=10000
=> a.1000+b.100+c.10+d+1=10000
=> abcd+1=10000
=> abcd=10000-1
=> abcd=9999
Vậy => abcd=9999
abcd5 = 5.abcd
abcd . 10 + 5 = 50000 + abcd
Cùng bớt 2 vế đi abcd + 5 ta được:
abcd . 9 = 49995
=> abcd = 49995 : 9
=> abcd = 5555