Tìm x,y :
\(\left(x+1,5\right)^8+\left(2,7-y\right)^{10}=0\)
Giúp mk với !
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=>x+1,5=0 và 2,7-y=0
=>x=-1,5(loại) và y=2,7(loại)
Vậy: Không có cặp số nguyên x,y nào thỏa mãn
=>x+1,5=0 và 2,7-y=0
=>x=-1,5(loại) và y=2,7(loại)
Vậy: Không có cặp số nguyên x,y nào thỏa mãn
Ta có :
\(\left\{{}\begin{matrix}\left(x+1,5\right)^8\ge0\\\left(2,7-y\right)^{12}\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left(x+1,5\right)^8+\left(2,7-y\right)^{12}\ge0\)
Mà \(\left(x+1,5\right)^8+\left(2,7-y\right)^{12}=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+1,5\right)^8=0\\\left(2,7-y\right)^{12}=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=-1,5\\y=2,7\end{matrix}\right.\)
Vậy...
a, A = 3,5 + |x - 2017| - 9
= -5,5 + |x - 2017|
Ta có : |x - 2017| \(\ge0\Rightarrow-5,5+\left|x-2017\right|\ge-5,5\)
Dấu ''='' xảy ra <=> x - 2017 = 0 <=> x = 2017
Vậy GTNN của A = -5,5 <=> x = 2017
@Cô Bé Dễ Thương
a/ Ta luôn có : \(\begin{cases}x^2\ge0\\\left(y-\frac{1}{10}\right)^4\ge0\end{cases}\)\(\Rightarrow x^2+\left(y-\frac{1}{10}\right)^4\ge0\)
Để dấu "=" xảy ra thì x = 0 , y = 1/10
b/ Tương tự.
Lớp 8 nên sử dụng hằng đẳng thức
(=) X3 +3x2 +y3+5y2-x3-y3=0
(
a) \(\left(x-1,3\right)^2=9\Leftrightarrow\left[{}\begin{matrix}x-1,3=3\\x-1,3=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4,3\\x=-1,7\end{matrix}\right.\)
b) 24-x = 32
⇔ 24-x = 25
⇔ 4-x=5
⇔ x=-1
c) (x+1,5)2+(y-2,5)10=0
\(\Leftrightarrow\left\{{}\begin{matrix}x+1,5=0\\y-2,5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1,5\\y=2,5\end{matrix}\right.\)
\(a,\left(x-1,3\right)^2=9\\ \Leftrightarrow\left(x-1,3+9\right)\left(x-1,3-9\right)=0\\ \Leftrightarrow\left(x-7,7\right)\left(x-10,3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=7,7=\dfrac{77}{10}\\x=10,3=\dfrac{103}{10}\end{matrix}\right.\)
\(b,2^{4-x}=32=2^5\\ \Leftrightarrow4-x=5\\ \Leftrightarrow x=-1\)
\(c,\left(x+1,5\right)^2+\left(y-2,5\right)^{10}=0\\ \Leftrightarrow\left\{{}\begin{matrix}x+1,5=0\\y-2,5=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=-1,5=-\dfrac{3}{2}\\y=2,5=\dfrac{5}{2}\end{matrix}\right.\)
\(\left(x+1.5\right)^8+\left(2.7-y\right)^{10}=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+1.5=0\\2.7-y=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-1.5\\y=2.7\end{matrix}\right.\)
Vậy : phương trình có cặp nghiệm \(\left(x,y\right)=\left(-1.5,2.7\right)\)
(x+1,5)8+(2,7-y)10=0
⇒\(\left[{}\begin{matrix}\left(x+1,5\right)^8\\\left(2,7-y\right)^{10}\end{matrix}\right.=0\)
⇒\(\left[{}\begin{matrix}x+1,5=0\\2,7-y=0\end{matrix}\right.\) ⇒\(\left[{}\begin{matrix}x=0-1,5\\y=2,7-0\end{matrix}\right.\) ⇒\(\left[{}\begin{matrix}x=-1,5\\y=2,7\end{matrix}\right.\)