Tìm n thuộc z để phân số a= 3n+3/n-4 có giá trị nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mk giải câu a thui nha
để \(\frac{6n-1}{3n+2}\)là số nguyên thì:
(6n-1) sẽ phải chia hết cho(3n+2)
mà (3n+2) chja hết cho (3n+2)
=> 2(3n+2) cx sẽ chia hết cho (3n+2)
<=> (6n+4) chia hết cho (3n+2)
mà (6n-1) chia hết cho (3n+2)
=> [(6n+4)-(6n-1)] chja hết cho (3n+2)
(6n+4-6n+1) chja hết cho 3n+2
5 chia hết cho3n+2
=> 3n+2 \(\in\){1,5,-1,-5}
ta có bảng
3n+2 | 1 | 5 | -1 | -5 |
3n | 3 | 7 | 1 | -3 |
n | 1 | -1 |
vậy....
bạn có thể giải thích ra được không !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
A là số nguyên <=> 3n-5 chia hết cho n+4
Có : 3n+5 = 3n-12+17=3(n-4)=17
=> 3(n-4)+17 chia hết cho n-4
mà 3(n-4) chia hết cho n-4=> 17 chia hết cho n-4
=> n-4 thuộc Ư(17)
=> n-4 thuộc {1;-1;17;-17}
=> n thuộc {5;3;21;-13}
Vậy n thuộc {5;3;21;-13} thì A nhận giá trị nguyên
k cho mình nha!!!
Để A có giá trị nguyên thì 3n-5 chia hết cho n+4
=> 3n+12-17 chia hết cho n+4
=> 17 chia hết cho n+4
=> n+4 thuộc Ư(17)={-1;1;-17;17}
=> n thuộc {-5;-3;-21;13}
Ta có:
\(A=\dfrac{3n+3}{n-4}=\dfrac{3n-12+15}{n-4}=\dfrac{3\left(n-4\right)+15}{n-4}\)
\(=\dfrac{3\left(n-4\right)}{n-4}+\dfrac{15}{n-4}=3+\dfrac{15}{n-4}\)
Để A nguyên thì
15 ⋮ n - 4
⇒ n - 4 ∈ Ư(15) = {1; -1; 3; -3; 5; -5; 15; -15}
⇒ n ∈ {5; 3; 7; 1; 9; -1; 19; -11}
Vậy ...
3n+3/n-4=3n+3/3n-12=3n-12+15/3n-12
=1+15/3n-12
=>15chia hết cho 3n-12
=>3n-12 thuộc Ư(15)
bạn tự tính tieép