K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4A=4.(1+4+4^2+4^3+........+4^23)

4A-1=(4+4^2+4^3+4^4+........+4^23+4^24)

-(1+4^1+4^2+4^3+.........+4^23)

=>3A=4^24-1

=3A+1=4^24

Vì 3A+1=4^24=(4^3)^8=64^8>63^7 (Cơ số lớn hơn , số mũ lớn hơn)

Vậy 3A+1>63^7

HQ
Hà Quang Minh
Giáo viên
7 tháng 10 2023

a.

Cân nặng (kg)

39

40

41

42

43

45

Số học sinh

1

4

3

4

1

2

b. Có 2 bạn cân nặng 45 kilogam.

30 tháng 12 2018

\(b,\)Vì p là SNT > 3 => p có dạng : 3k + 1 ; 3k + 2 ( k thuộc N)

Với p = 3k + 1

\(=>\left(3k+2\right)\left(3k\right)⋮3\)(1)

Với p = 3k + 2

\(=>\left(3k+3\right)\left(3k+1\right)=3\left(k+1\right)\left(3k+1\right)⋮3\)(2)

Từ (1) và (2) => ĐPCM

20 tháng 1 2016

vòng 12 ak , A..<..B

mình làm rồi đugs tick nah

20 tháng 1 2016

>. chac chan

 

15 tháng 11

Olm chào em, em làm như này là cưa đúng rồi, em nhé. 

15 tháng 11

9 tháng 12 2018

bằng 2 nha bạn hải nam

9 tháng 12 2018

gải ra hộ tớ

a:

Cân nặng394041424345
số lượng143412

N=15

c: Cân nặng trung bình là:

\(\dfrac{39\cdot1+40\cdot4+41\cdot3+42\cdot4+43+45\cdot2}{15}\simeq41,5\left(kg\right)\)

1 tháng 8 2023

Bài 1:

\(2^{49}=\left(2^7\right)^7=128^7;5^{21}=\left(5^3\right)^7=125^7\\ Vì:128^7>125^7\Rightarrow2^{49}>5^{21}\)

Bài 2:

\(a,S=1+3+3^2+3^3+...+3^{99}\\ =\left(1+3+3^2+3^3\right)+3^4.\left(1+3+3^2+3^3\right)+...+3^{96}.\left(1+3+3^2+3^3\right)\\ =40+3^4.40+...+3^{96}.40\\ =40.\left(1+3^4+...+3^{96}\right)⋮40\\ b,S=1+4+4^2+4^3+...+4^{62}\\ =\left(1+4+4^2\right)+4^3.\left(1+4+4^2\right)+...+4^{60}.\left(1+4+4^2\right)\\ =21+4^3.21+...+4^{60}.21\\ =21.\left(1+4^3+...+4^{60}\right)⋮21\)

1 tháng 8 2023

Bài 1 :

\(2^{49}=\left(2^7\right)^7=128^7\)

\(5^{21}=\left(5^3\right)^7=125^7\)

mà \(125^7< 128^7\)

\(\Rightarrow2^{49}>5^{21}\)

Bài 2 :

a) \(S=1+3+3^2+3^3+...3^{99}\)

\(\Rightarrow S=\left(1+3+3^2+3^3\right)+3^4\left(1+3+3^2+3^3\right)...+3^{96}\left(1+3+3^2+3^3\right)\)

\(\Rightarrow S=40+40.3^4+...+40.3^{96}\)

\(\Rightarrow S=40\left(1+3^4+...+3^{96}\right)⋮40\)

\(\Rightarrow dpcm\)

b) \(S=1+4+4^2+4^3+...4^{62}\)

\(\Rightarrow S=\left(1+4+4^2\right)+4^3\left(1+4+4^2\right)+...4^{60}\left(1+4+4^2\right)\)

\(\Rightarrow S=21+4^3.21+...4^{60}.21\)

\(\Rightarrow S=21\left(1+4^3+...4^{60}\right)⋮21\)

\(\Rightarrow dpcm\)

29 tháng 3 2019

\(B=\frac{23^{41}+1}{23^{42}+1}\)

Vì B < 1

\(\Rightarrow B=\frac{23^{41}+1}{23^{42}+1}< \frac{23^{41}+1+22}{23^{42}+1+22}=\frac{23^{41}+23}{23^{42}+23}=\frac{23(23^{40}+1)}{23\left(23^{41}+1\right)}=\frac{23^{40}+1}{23^{41}+1}=A\)

P/s: Hoq chắc

29 tháng 3 2019

ta có 

\(B=\frac{23^{41}+1}{23^{42}+1}< \frac{23^{41}+1+22}{23^{42}+1+22}=\frac{23^{41}+23}{23^{42}+23}=\frac{23\left(23^{40}+1\right)}{23\left(23^{41}+1\right)}=\frac{23^{40}+1}{23^{41}+1}=A\)

\(\Rightarrow B< A\)

26 tháng 11 2021

D