tam giấc ABC vuông tại A,AB=9,AC=12
a. giải tam giác ABC (tính BC,góc C,góc B)
gải chi tiết tung bước ra giup mik nha mik cảm ơn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Sửa đề: Tam giác ABC cân. \(\rightarrow\) Tam giác ABI cân.
Xét \(\Delta ABD\) vuông tại A và \(\Delta IBD\) vuông tại I:
BD chung.
\(\widehat{ABD}=\widehat{IBD}\) (BD là phân giác).
\(\Rightarrow\Delta ABD=\Delta IBD\) (cạnh huyền - góc nhọn).
\(\Rightarrow BA=BI\) (2 cạnh tương ứng).
\(\Rightarrow\Delta ABI\) cân tại A.
b) Xét \(\Delta ADQ\) và \(\Delta IDC:\)
\(\widehat{ADQ}=\widehat{IDC}\) (đối đỉnh).
\(\widehat{QAD}=\widehat{CID}\left(=90^o\right).\)
\(AD=ID\left(\Delta ABD=\Delta IBD\right).\)
\(\Rightarrow\Delta ADQ=\Delta IDQ\left(g-c-g\right).\)
\(\Rightarrow AQ=IC\) (2 cạnh tương ứng).
c) Ta có:
\(BQ=BA+AQ.\\ BC=BI+IC.\)
Mà \(\left\{{}\begin{matrix}BA=BI\left(cmt\right).\\AQ=IC\left(cmt\right).\end{matrix}\right.\)
\(\Rightarrow BQ=BC.\)
\(\Rightarrow\Delta BQC\) cân tại Q.
Hình tự vẽ
a, ta có : \(AB^2+AC^2=BC^2\Rightarrow6^2+8^2=BC^2\)
\(\Rightarrow\)\(BC^2=10^2\)\(\Rightarrow BC=10cm\)
b, ta có : SABC=\(\frac{1}{2}.AB.AC=\frac{1}{2}.BC.AH\)
\(\Rightarrow S_{ABC}=\frac{1}{2}.6.8=\frac{1}{2}.AH.10\)
\(\Rightarrow5.AH=24\Rightarrow AH=4,8cm\)
c,d đang giải
a) Xét ΔABM và ΔACM có
AB=AC(ΔABC cân tại A)
AM chung
BM=CM(M là trung điểm của BC)
Do đó: ΔABM=ΔACM(c-c-c)
⇒\(\widehat{BAM}=\widehat{CAM}\)(hai góc tương ứng)
mà tia AM nằm giữa hai tia AB,AC
nên AM là tia phân giác của \(\widehat{BAC}\)
b) Xét ΔABC có
AB là cạnh đối diện của \(\widehat{B}\)
AC là cạnh đối diện của \(\widehat{C}\)
\(\widehat{B}=\widehat{C}\)(gt)
Do đó: AB=AC(Định lí quan hệ giữa cạnh và góc đối diện trong tam giác)
a) Vì AB = AC => \(\Delta ABC\) cân tại A => \(\widehat{ABC}\) = \(\widehat{ACB}\)
Xét \(\Delta ABM\) và \(\Delta ACM\) có:
\(\widehat{ABC}\) = \(\widehat{ACB}\)
AB = AC
MB = MC
=> \(\Delta ABM\) = \(\Delta ACM\) (c.g.c)
=> \(\widehat{BAM}\) = \(\widehat{CAM}\) (2 góc tương ứng)
b) Vì \(\widehat{B}\) = \(\widehat{C}\) => \(\Delta ABC\) cân tại A
=> AB = AC
Áp dụng định lý Pitago ta có:
\(BC^2=AB^2+AC^2\)
\(\Rightarrow BC=\sqrt{AB^2+AC^2}\)
\(\Rightarrow BC=\sqrt{9^2+12^2}\)
\(\Rightarrow BC=15\)
Ta có:
\(sinC=\dfrac{AB}{BC}=\dfrac{9}{15}\Rightarrow sinC=\dfrac{3}{5}\)
\(\Rightarrow C\approx36^052'\)
\(B=90^0-C=53^08'\)
a) Xét ΔABC vuông tại A có
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=9^2+12^2=225\)
hay BC=15
Xét ΔABC vuông tại A có
\(\sin\widehat{C}=\dfrac{AB}{BC}=\dfrac{9}{15}=\dfrac{3}{5}\)
nên \(\widehat{C}\simeq37^0\)
\(\Leftrightarrow\widehat{B}=53^0\)