K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 8 2023

Each term of S is n!(n2 + n + 1) = n![n(n + 1) + 1] = n(n + 1)n! + n!

By definition, n(n + 1)n! + n! = n! + n(n + 1)!

Therefore, S can be simplified as

1! + 1.2! + 2! + 2.3! + ... + 100! + 100.101!

So \(\dfrac{S+1}{101!}=\dfrac{1+1!+1\cdot2!+2!+2\cdot3!+...+100!+100\cdot101!}{101!}\)

\(=\dfrac{2!+1\cdot2!+2!+2\cdot3!+3!+...+100!+100\cdot101!}{101!}\)

\(=\dfrac{3!+2\cdot3!+3!+...+100!+100\cdot101!}{101!}\)

\(=\dfrac{4!+3\cdot4!+4!+...+100!+100\cdot101!}{101!}\)

\(=...\)

\(=\dfrac{100!+99\cdot100!+100!+100\cdot101!}{101!}\)

\(=\dfrac{101!+100\cdot101!}{101!}\)

\(=1+100=101\)

Hence, \(\dfrac{S+1}{101!}=101\)

26 tháng 2 2018

lâu nhỉ

6 tháng 5 2021

       A = 1*2*3 + 2*3*4 + 3*4*5 ... + 99*100*101

=> 4A = 1*2*3*4 + 2*3*4*4 + 3*4*5*4 + ... +99*100*101*4

=> 4A = 1*2*3*4 + 2*3*4*(5 - 1) + 3*4*5*( 6 - 2) + ... + 99*100*101*(102 - 98)

=> 4A = 1*2*3*4 + 2*3*4*5 - 1*2*3*4 + 3*4*5*6 - 2*3*4*5 + ... + 99*100*101*102 - 98*99*100*101

=> 4A = 99*100*101*102

=> 4A = 101989800

=>   A = 25497450

7 tháng 7 2017

\(K=2^1-2^2+2^3-2^4+...+2^{99}-2^{100}\)

\(2K=2\left(2^1-2^2+2^3-2^4+...+2^{99}-2^{100}\right)\)

\(2K=2^2-2^3+2^4-2^5+....+2^{100}-2^{101}\)

\(2K+K=\left(2^2-2^3+2^4-2^5+.....+2^{100}-2^{101}\right)+\left(2^1-2^2+2^3-2^4+.....+2^{99}-2^{100}\right)\)\(3K=2-2^{101}\)

\(K=\dfrac{2-2^{101}}{3}\)

18 tháng 1 2019

MTBT Phải không

25 tháng 12 2015

Nguyễn Văn không bik là fan naruto à? Làm quen nghen