K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 7 2016

A B K C D E

a) Xét \(\Delta ABE\) và \(\Delta ACD\)

có: + AE=AD(gt)

       +A: là góc chung

        +AB=AC(do \(\Delta ABC\) cân tại A)

Vậy \(\Delta ABE\)=\(\Delta ACD\) (c.g.c)

=> BE=CD( 2 cạnh tương ứng)

b) Vì \(\Delta ABE\) =\(\Delta ACD\) (cmt)

nên: góc ABE=góc ACD( 2 góc tương ứng)

c) .\(\Delta KBC\) cân tại K

. Ta có: góc B = \(B_1+B_2\)

                     C=\(C_1=C_2\)

                     B=C(gt);\(B_1=C_1\) (cmt)

=> \(B_2=C_2\)

Do đó \(\Delta KBC\) cân tại K

8 tháng 7 2016

có bạn nào giải được bài này ko giúp mk với khocroi huhuhu

9 tháng 5 2022

a,

Xét Δ ADC và Δ AEB

Ta có : AD = AE (gt)

           AC = AB (Δ ABC cân tại A)

          \(\widehat{DAC}=\widehat{EAB}\) (góc chung)

=> Δ ADC = Δ AEB (c.g.c)

b, Ta có : Δ ADC = Δ AEB (cmt)

=> \(\widehat{ACD}=\widehat{ABE}\)

9 tháng 5 2022

 a)Xét △ABE và △ACD có

AB = AC ( △ABC cân tại A)

AD = AE (gt)

\(\widehat{A}\) là góc chung

=> △ABE = △ACD (c-g-c) 

=> BE = CD ( e cạnh tương ứng)

b) Vì △ABE = △ACD 

nên \(\widehat{ABE}=\widehat{ACD}\)

c) 

Vì \(\widehat{ABC}=\widehat{ABE}+\stackrel\frown{EBC}\)

\(\text{​​}\widehat{ACB}=\widehat{ACD}+\widehat{DCB}\)

mà \(\widehat{ABE}=\widehat{ACD}\)

\(\widehat{ABC}=\widehat{ACB}\)

nên \(\widehat{EBC}=\widehat{DCB}\)

=> △KBC là tam giác cân tại K

 

a: Xét ΔABE và ΔACDcó

AB=AC

góc BAE chung

AE=AD

=>ΔABE=ΔACD

=>BE=CD

b: ΔABE=ΔACD

=>góc ABE=góc ACD

c: góc ABE+góc KBC=góc ABC

góc ACD+góc KCB=góc ACB

mà góc ABE=góc ACD và góc ABC=góc ACB

nên góc KBC=góc KCB

=>KB=KC

d: AB=AC

KB=KC

=>AK là trung trực của BC

=>A,K,I thẳng hàng

a: Xét ΔABE và ΔACD có

AB=AC

\(\widehat{BAE}\) chung

AE=AD
DO đó: ΔABE=ΔACD

Suy ra: BE=CD

b: Xét ΔABC có AD/AB=AE/AC
nên DE//BC

c: Xét ΔBDC và ΔCEB có 

DB=EC

DC=EB

BC chung

Do đó; ΔBDC=ΔCEB

Suy ra: \(\widehat{KBC}=\widehat{KCB}\)

hay ΔKBC cân tại K

14 tháng 6 2023

giúp m v :(

a: Xét ΔABC có AD/AB=AE/AC

nên DE//BC

b: Xét ΔABE và ΔACD có

AB=AC

góc A chung

AE=AD

=>ΔABE=ΔACD

c: Xét ΔIDB và ΔIEC có

góc IDB=góc IEC

DB=EC

góc IBD=góc ICE

=>ΔIDB=ΔIEC

d: Xét ΔABI và ΔACI có

AB=AC

BI=CI

AI chung

=>ΔABI=ΔACI

=>góc BAI=góc CAI

=>AI là phân giác của góc BAC

10 tháng 3 2021

A B C D E K

a, Vì tam giác ABC cân tại A nên AB=AC;B=C

    Xét tam giác AEB và tam giác ADC có:

    Góc A chung 

    AB=AC(cmt)

    AD=AE(gt)

=> Tam giác ADC=tam giác AEB

=>BE=CD và góc ABE= góc ACD

b, Ta có

   A+B+C=180(tổng 3 góc của tam giác)

  B+C=180-A    (1)

Và A+D+E=180

    D+E=180-A   (2)

 Từ (1) và (2)=>B+C=D+E

Mà B=C và D=E

=>C=E

Mà 2 góc ở vị trí đồng vị 

=>DE//BC

c, Ta có 

  B=C (cmt)

  góc ABE= góc ACD(cm ở câu a)

Mà B-ABE=EBC

và  C-ACD=DCB

=> góc EBC = góc DCB

=> tam giác KBC cân tại K

1 tháng 7 2016

a) Xét tam giác ABE và tam giác ADC: 

AE=AC(theo gt tam giác ABC cân ) 

góc A chung 

AE=AD(theo gt) 

=> Tam giác ABE=tam giác ADC(c.g.c) 

nên BE=CD(dpcm) 

b) Vì tam giác ABE=tam giác ACD nên góc ABE=góc ACD( 2 góc tương ứng) 

c) Xét Tam giác DKB và tam giác EKC 

góc DKB=góc EKC(đối đỉnh)

AB=AC(tam giác ABC cân) mà AD=AE (gt) =>DB=EC

góc DBK= góc ECK 

=>tam giác DKB=tam giác EKC(g.c.g) 

=>KB=KC(2 cạnh tương ứng) 

=>tam giác KBC là tam giác cân .

2 tháng 7 2016

A B C D E K

a) Xét \(\Delta\) BAE và \(\Delta\) CAD có:

AB = AC ( \(\Delta\) ABC cân tại A )

BAE = CAD ( chung góc A )

AD = AE ( giả thiết )

.=> \(\Delta\) BAE = \(\Delta\) CAD ( c . g . c ) (1)

=> BE = CD ( 2 cạnh tương ứng )

Vậy BE = CD ( đpcm)

b) Ta có:  \(\Delta\) BAE = \(\Delta\) CAD ( chứng minh (1) )

=> ABE = ACD (  2 góc tương ứng )

Vậy ABE = ACE ( đpcm )

c) Ta có: \(\Delta\) ABC cân tại A ( giả thiết )

=> ABC = ACB ( tính chất tam giác cân )

hay DBC = ECB (2)

Xét \(\Delta\) DBC và \(\Delta\) ECB có:

CD = BE ( chứng minh a)

DBC = ECB ( chứng minh (2) )

BC là cạnh chung

=> \(\Delta\) DBC = \(\Delta\) ECB ( c . g . c )

=> DCB = EBC ( 2 góc tương ứng )

hay KCB = KBC 

Xét \(\Delta\) KBC có: KCB = KBC

=> \(\Delta\) KBC cân tại K

Vậy \(\Delta\) KBC cân tại K 

Chuk bn hk tốt ! vui

7 tháng 3 2022

a.Xét tam giác ABE và tam giác ACD, có:

\(\widehat{A}:chung\)

AD = AE ( gt )

AB = AC ( ABC cân )

Vậy tam giác ABE = tam giác ACD ( c.g.c )

b.Xét tam giác DBC và tam giác ECB, có:

BD = CE ( AB=AC; AD=AE )

góc B = góc C ( ABC cân )

BC: cạnh chung 

Vậy tam giác DBC = tam giác ECB ( c.g.c )

=> góc DCB = góc EBC ( 2 góc tương ứng )

=> Tam giác KBC là tam giác cân và cân tại K

c.Xét tam giác AKB và tam giác AKC có:

AB=AC ( ABC cân )

góc ABK = góc ACK ( góc B = góc C; góc KBC = góc KCB )

AK: cạnh chung 

Vậy tam giác AKB = tam giác AKC ( c.g.c )

=> góc BAK = góc CAK ( 2 góc tương ứng )

Mà Tam giác ADE cân tại A ( AD=AE )

=> AK là đường cao 

=> AK vuông DE (1)

Mà Tam giác KBC cân tại K 

=> AK vuông với BC (2)

Từ (1) và (2) => DE//BC

d. Ta có: AK là đường cao ( cmt ) cũng là đường trung tuyến

Mà M là trung điểm BC 

=> A,K,M thẳng hàng

 

19 tháng 4 2016

Tự kẻ hình nha !!!

 a)Tam giác ABC cân tại A =>AB=AC;góc B= góc C

D thuộc AB => BD+AD= AB

C thuộc AC =>CE + EA = AC

Mà AB=AC nên AD=EA

Xét tam giác AEB và tam giác ADC:

AD=EA( cmt)

AB=AC(cmt)

góc A: góc chung

=>tam giác AEB = tam giác ADC (c.g.c)

=>BE=CD(2 cạnh tương ứng)

b)theo a) ta có tam giác AEB=tam giác ADC=>góc ABE= góc ACD( 2 góc tương ứng)

c)ta có góc B= góc C và góc ABE = góc ACD

Mà góc ABE + góc EBC =  goc B

      Góc ACD +góc DCB= góc C =>góc EBC = góc DCB 

Tam giác KBC có: góc EBC = góc DCB =>tam giác KBC là tam giác cân tại K

    * nhớ k cho mk nhé!!!

22 tháng 4 2021

hướng dẫn:

a) chứng minh tam giác ABE = tam giác ACD (c.g.c) (1)

** câu này dễ rồi nhé, A^ chung, AB = AC, AD = AE**

=> BE = CD

b) (1) => ABE^ = ACD^

c) Dễ thấy BD = CE

từ đó dễ chứng minh tam giác BDC = tam giác CEB (c.c.c)

=> BCD^ = EBC^ => BCK^ = CBK^ => tam giác KBC cân

17 tháng 3 2018

hướng dẫn:

a) chứng minh tam giác ABE = tam giác ACD (c.g.c) (1)

** câu này dễ rồi nhé, A^ chung, AB = AC, AD = AE**

=> BE = CD

b) (1) => ABE^ = ACD^

c) Dễ thấy BD = CE

từ đó dễ chứng minh tam giác BDC = tam giác CEB (c.c.c)

=> BCD^ = EBC^ => BCK^ = CBK^ => tam giác KBC cân