K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 7 2016

Dài lắm bn ak,bạn vào google đăng cái này rồi tìm ra kết quả của Online Math nó có cái bài giống thế này chỉ khác 1 tẹo thôi.

22 tháng 7 2016

jup mk di 

24 tháng 7 2016

\(2^{2n}\left(2^{2n+3}-1\right)-1\)

=\(4n\left(4n+2^3-1\right)-1\)

=\(\left(4n.4n+4n.2^3+4n-1\right)-1\)

= (16.2n + 32n + 3n - 1n) - 1n 

= 65n chia hết cho 5

=> đpcm

 

 

27 tháng 7 2016

\(\overline{ababab}=\overline{ab}.10000+\overline{ab}.100+\overline{ab}\\ =\overline{ab}\left(10000+100+1\right)\\ =\overline{ab}.10101⋮13v\text{à}7\)

26 tháng 8 2018

Ta có: \(\left(2n-1\right)^3-2n+1=\left(2n-1\right)^3-\left(2n-1\right)\)

\(=\left(2n-1\right)\left(4n^2-4n+1-1\right)\)

\(=4n\left(n-1\right)\left(2n-1\right)\)

Ta có: \(4⋮4\Rightarrow4n\left(n-1\right)\left(2n-1\right)⋮4\) (1)

Mà \(n\left(n-1\right)\) là 2 số tự nhiên liên tiếp nên chia hết cho 2

\(\Rightarrow4n\left(n-1\right)\left(2n-1\right)⋮2\) (1)

Từ (1) và (2):

\(\Rightarrow4n\left(n-1\right)\left(2n-1\right)⋮8\)

Hay: \(A⋮8\)

=.= hok tốt!!

8 tháng 9 2017

Nếu: m chẵn , n lẻ thì m + 2n + 1 chẵn => (m+2n+1)(3m-2n+2) chẵn (1)

Nếu: m lẻ , n chẵn thì m + 2n + 1 chẵn => (m+2n+1)(3m-2n+2) chẵn (2)

Nếu: m, n đều lẻ m + 2n + 1 chẵn => (m+2n+1)(3m-2n+2) chẵn (3)

Nếu: m,n đều chẵn 3m-2n+2 chẵn => (m+2n+1)(3m-2n+2) chẵn (4)

Từ (1),(2),(3),(4) suy ra với mọi m,n \(\in\) N thì A = (m+2n+1)(3m-2n+2) là số chẵn

24 tháng 12 2017

=(-7) nhé bạn!

mình nha!

7 tháng 10 2021

\(1,\)

\(a,\) Với \(n=1\Leftrightarrow5+2\cdot1+1=8⋮8\left(đúng\right)\)

Giả sử \(n=k\left(k\ge1\right)\Leftrightarrow5^k+2\cdot3^{k-1}+1⋮8\)

Với \(n=k+1\)

\(5^n+2\cdot3^{n-1}+1=5^{k+1}+2\cdot3^k+1\\ =5^k\cdot5+2\cdot3^k+1\\ =5^k\cdot2+2\cdot3^k+5^k\cdot3+1\\ =2\left(5^k+3^k\right)+5^k+2\cdot5^{k-1}+1+2\cdot3^{k-1}-2\cdot3^{k-1}\\ =2\left(5^k+3^k\right)+\left(5^k+2\cdot3^{k-1}+1\right)-2\left(3^{k-1}+5^{k-1}\right)\)

Vì \(5^k+3^k⋮\left(5+3\right)=8;5^{k-1}+3^{k-1}⋮\left(5+3\right)=8;5^k+2\cdot3^{k-1}+1⋮8\) nên \(5^{k+1}+2\cdot3^k+1⋮8\)

Theo pp quy nạp ta được đpcm

\(b,\) Với \(n=1\Leftrightarrow3^3+4^3=91⋮13\left(đúng\right)\)

Giả sử \(n=k\left(k\ge1\right)\Leftrightarrow3^{k+2}+4^{2k+1}⋮13\)

Với \(n=k+1\)

\(3^{n+2}+4^{2n+1}=3^{k+3}+4^{2k+3}\\ =3^{k+2}\cdot3+16\cdot4^{2k+1}\\ =3^{k+2}\cdot3+3\cdot4^{2k+1}+13\cdot4^{2k+1}\\ =3\left(3^{k+2}+4^{2k+1}\right)+13\cdot4^{2k+1}\)

Vì \(3^{k+2}+4^{2k+1}⋮13;13\cdot4^{2k+1}⋮13\) nên \(3^{k+3}+4^{2k+3}⋮13\)

Theo pp quy nạp ta được đpcm

7 tháng 10 2021

\(1,\)

\(c,C=6^{2n}+3^{n+2}+3^n\\ C=36^n+3^n\cdot9+3^n\\ C=\left(36^n-3^n\right)+\left(3^n\cdot9+2\cdot3^n\right)\\ C=\left(36^n-3^n\right)+3^n\cdot11\)

Vì \(36^n-3^n⋮\left(36-3\right)=33⋮11;3^n\cdot11⋮11\) nên \(C⋮11\)

\(d,D=1^n+2^n+5^n+8^n\)

Vì \(1^n+2^n+5^n⋮\left(1+2+5\right)=8;8^n⋮8\) nên \(D⋮8\)

13 tháng 3 2018

x^2(x + 2) + 4(x + 2) = 0

(x^2 + 4)(x + 2) =0

=>  x^2 + 4 = 0 hoặc x + 2 = 0

Ta có : x^2 >= 0 => x^2 + 4 >= 4 mà x^2 + 4 = 0 => Vô lí

Vậy x + 2 = 0 => x = -2

Vậy x = -2

14 tháng 3 2018

Bạn kia giải hơi khó nhìn nên t giải lại.

\(x^2\left(x+2\right)+4\left(x+2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x^2+4\right)=0\)

\(\Rightarrow\hept{\begin{cases}x^2+4=0\\x+2=0\end{cases}}\Rightarrow\hept{\begin{cases}x^2\ge0\Rightarrow x^2+4\ge4\\x=-2\end{cases}}\)

Xét trường hợp \(x^2\ge0\Rightarrow x^2+4\ge4\)

Mà \(x^2+4=0\)(vô lý)

Suy ra phương trình có nghiệm là (-2)

\(\dfrac{-x^2-3x+18}{\left(x-2\right)\left(x+2\right)}< 0\)

\(\Leftrightarrow\dfrac{x^2+3x-18}{\left(x-2\right)\left(x+2\right)}>0\)

 

Mở ảnh

Theo BXD, ta có: f(x)>0

=>\(x\in\left(-\infty;-6\right)\cup\left(-2;2\right)\cup\left(3;+\infty\right)\)