a) Chứng minh rằng số chính phương khi chia cho 3 ko thể dự 2
b) Chứng minh tổng của 3 số chính phương liên tiếp ko thể là một số chính phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi 5 số tự nhiên liên tiếp là n- 2; n - 1; n ; n + 1; n + 2
Ta có : (n-2)2 + (n-1)2 + n2 + (n+1)2 + (n +2)2 = (n2 - 4n + 4) + (n2 - 2n + 1) + n2 + (n2 + 2n + 1)+( n2 + 4n + 4) = 5n2 + 10 = 5.(n2 + 2)
Ta có 5. (n2 + 2) chia hết cho 5 nhưng không chia hết cho 25
vì n2 + 2 không chia hết cho 5 (do n2 có thể tận cùng là 0;1;4;5;6;9 )
=> 5.(n2 + 2) không là số chính phương => đpcm
Ta biết một số chính phương hoặc chia hết cho 3 hoặc chia 3 dư 1
(3k)² = 9k² chia hết cho 3
(3k+1)² = 9k² + 6k + 1 chia 3 dư 1
(3k+2)² = 9k² + 12k + 3 + 1 chia 3 dư 1
-----------
A = a^2k + (a+1)^2m + (a+2)^2n = (a²)^k + ((a+1)²)^m + ((a+2)²)^n
a, a+1, a+2 là 3 số nguyên liên tiếp nên có đúng 1 số chia hết cho 3, 1 số chia 3 dư 1, 1 số chia 3 dư 2
=> a², (a+1)², (a+2)² có một số chia hết cho 3, 2 số chia 3 dư 1
=> (a²)^k, ((a+1)²)^m và ((a+2)²)^n có 1 số chia hết cho 3, 2 số chia 3 dư 1
=> A = (a²)^k + ((a+1)²)^m + ((a+2)²)^n chia 3 dư 2 không thể là số chính phương b²
(vì b² chia 3 dư 0 hoặc 1)
Ta biết một số chính phương hoặc chia hết cho 3 hoặc chia 3 dư 1
(3k)² = 9k² chia hết cho 3
(3k+1)² = 9k² + 6k + 1 chia 3 dư 1
(3k+2)² = 9k² + 12k + 3 + 1 chia 3 dư 1
-----------
A = a2k + (a+1)2m + (a+2)2n = (a²)k + ((a+1)²)m + ((a+2)²)n
a, a+1, a+2 là 3 số nguyên liên tiếp nên có đúng 1 số chia hết cho 3, 1 số chia 3 dư 1, 1 số chia 3 dư 2
=> a², (a+1)², (a+2)² có một số chia hết cho 3, 2 số chia 3 dư 1
=> (a²)k, ((a+1)²)m và ((a+2)²)n có 1 số chia hết cho 3, 2 số chia 3 dư 1
=> A = (a²)k + ((a+1)²)m + ((a+2)²)n chia 3 dư 2 không thể là số chính phương b²
(vì b² chia 3 dư 0 hoặc 1)
gọi 5 số liên tiếp là a;a+1;a+2;a+3;a+4
Ta có: ...... (Bạn tự làm tiếp nha)
Gọi số chính phương đã cho là a^2 (a là số tự nhiên)
* C/m a^2 chia 3 dư 0 hoặc dư 1
Với số tự nhiên a bất kì ta có: a chia hết cho 3, chia 3 dư 1 hoặc chia 3 dư 2.
- Nếu a chia hết cho 3 => a = 3k (k là số tự nhiên)
=> a^2 = (3k)^2 = 9k^2 chia hết cho 3 hay chia 3 dư 0
- Nếu a chia 3 dư 1 => a = 3k +1 => a^2 = (3k+1)^2 = 9k^2 + 6k +1 ; số này chia 3 dư 1
- Nếu a chia 3 dư 2 => a = 3k+2 => a^2 = (3k+2)^2 = 9k^2 + 12k + 4; số này chia 3 dư 1.
Vậy số chính phương chia cho 3 dư 0 hoặc 1
* Với số chính phương chia 4 dư 0 hoặc 1 bạn làm tương tự nhé.
* Mình nghĩ phải là số chính phương lẻ chia 8 dư 1 đúng không bạn?
Chắc làm như trên cũng ra thôi nhưng dài lắm, mình thử làm thế này bạn xem có được không nhé:
a^2 lẻ <=> a lẻ. Đặt a = 2k+3 (k là số tự nhiên)
=> a^2 = (2k + 3)^2 = 4k^2 + 12k + 9 = 4k(k+3k) + 8 + 1
- Nếu k lẻ => k + 3k chẵn hay k+3k chia hết cho 2 => 4k(k+3k) chia hết cho 8 => a^2 chia 8 dư 1
- Nếu k chẵn hay k chia hết cho 2 => 4k(k+3) chia hết cho 8 => a^2 chia 8 dư 1.
Vậy số chính phương khi chia cho 3 không thể dư 2 mà chỉ có thể dư 1 hoặc 0
(2k+1) 2k (2k-1)
(2k+1)^2 +4k^2 +(2k-1)^2=4k^2 +4k +1 +4k^2 +4k^2 -4k +1=12k^2+2 chia hết cho 2 không chia hết cho 4 nên không là số chính phương
Mình ko chắc đã đúng đâu