K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 12 2016

hơn 1nămtrời cả ad vận chưa có thiên tài nào thèm giải

20 tháng 3 2016

Ta có (1/2+1/9)+(1/3+1/8)+.....+(1/4+1/5)

=11/18+11/24+........+11/20

Vì các số hạng đều có tử chia hết cho 9=>tổng các phân số đó có tử chia het cho 11

Giải:

a) \(M=21^9+21^8+21^7+...+21+1\) 

Do \(21^n\) luôn có tận cùng là 1

\(\Rightarrow M=21^9+21^8+21^7+...+21+1\) 

Tân cùng của M là:

     \(1+1+1+1+1+1+1+1+1+1=10\) tận cùng là 0

\(\Rightarrow M⋮10\) 

\(\Leftrightarrow M⋮2;5\) 

b) \(N=6+6^2+6^3+...+6^{2020}\) 

\(N=6.\left(1+6\right)+6^3.\left(1+6\right)+...+6^{2019}.\left(1+6\right)\) 

\(N=6.7+6^3.7+...+6^{2019}.7\) 

\(N=7.\left(6+6^3+...+6^{2019}\right)⋮7\) 

\(\Rightarrow N⋮7\) 

Ta thấy: \(N=6+6^2+6^3+...+6^{2020}⋮6\) 

Mà \(6⋮̸9\) 

\(\Rightarrow N⋮̸9\) 

c) \(P=4+4^2+4^3+...+4^{23}+4^{24}\) 

\(P=1.\left(4+4^2\right)+4^2.\left(4+4^2\right)+...+4^{20}.\left(4+4^2\right)+4^{22}.\left(4+4^2\right)\) 

\(P=1.20+4^2.20+...+4^{20}.20+4^{22}.20\) 

\(P=20.\left(1+4^2+...+4^{20}+4^{22}\right)⋮20\) 

\(\Rightarrow P⋮20\) 

\(P=4+4^2+4^3+...+4^{23}+4^{24}\) 

\(P=4.\left(1+4+4^2\right)+...+4^{22}.\left(1+4+4^2\right)\) 

\(P=4.21+...+4^{22}.21\) 

\(P=21.\left(4+...+4^{22}\right)⋮21\) 

\(\Rightarrow P⋮21\) 

d) \(Q=6+6^2+6^3+...+6^{99}\) 

\(Q=6.\left(1+6+6^2\right)+...+6^{97}.\left(1+6+6^2\right)\) 

\(Q=6.43+...+6^{97}.43\) 

\(Q=43.\left(6+...+6^{97}\right)⋮43\) 

\(\Rightarrow Q⋮43\) 

Chúc bạn học tốt!

16 tháng 3 2020

\(B=2+2^2+2^3+2^4+...+2^{10}\)

=>\(B=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^9+2^{10}\right)\)

=>\(B=2\left(1+2\right)+2^3\left(1+2\right)+...+2^9\left(1+2\right)\)

=>\(B=3\left(2+2^3+...+2^9\right)⋮3\left(đpcm\right)\)

Trả lời:

\(B=2+2^2+2^3+2^4+....2^9+2^{10}\)

\(=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^9+2^{10}\right)\) (Phần này là nhóm các lũy thừa có cùng cơ số 2 vào các nhóm sao cho tổng nhóm đầu tiên chia hết cho 3 thì mấy nhóm sau với số số hạng tương tự nhóm 1 thì oke giải tiếp như sau)

\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^9\left(1+2\right)\)

\(=3\left(2+2^3+...+2^9\right)\)

Vì \(3⋮3\Rightarrow3\left(2+2^3+...+2^9\right)⋮3\)

=> đpcm

Vậy B chia hết cho 3

#Huyền Anh

16 tháng 3 2020

\(B=2+2^2+2^3+2^4+...+2^{10}\)

\(=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^9+2^{10}\right)\)

\(=2\left(1+2\right)+2^2\left(1+2\right)+...+2^9\left(1+2\right)\)

\(=3\left(2+2^2+...+2^9\right)⋮3\)

\(\Rightarrow B⋮3\)

..

16 tháng 3 2020

\(B=2+2^2+2^3+...+2^{10}\)

    =\(\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^9+2^{10}\right)\)

   =\(2\left(1+2\right)+2^3\left(1+2\right)+...+2^9\left(1+2\right)\)

   =\(2.3+2^3.3+2^5.3+2^7.3+2^9.3\)

  =\(3\left(2+2^3+2^5+2^7+2^9\right)⋮3\)

Vậy \(B⋮3\)

29 tháng 5 2018

a) Thay m = -1 và n = 2 ta có:

3m - 2n = 3(-1) -2.2 = -3 - 4 = -7

b) Thay m = -1 và n = 2 ta được 

7m + 2n - 6 = 7.(-1) + 2.2 - 6 = -7 + 4 - 6 = -9.


 

5 tháng 7 2017

Ta có n-3=n+4-7

6)=>n-4+7 chia hết cho n+4

=>7 chia hết cho n+4

=> n+4 thuộc Ư(7)

=> n+4 thuộc {1, -1,7,-7}

=> n thuộc {-3,-5,3,-11}

19 tháng 8 2016

a/ (4n - 2)(4n + 8) = 2(2n - 1)4(n + 2)= 8(2n - 1)(n+2) cái này chia hết cho 8

19 tháng 8 2016

b/ 2n(2n + 6) = 4n(n+3) chia hết cho 4