Tìm x
A( (2x+1)^2=25
B) 2^x+2-2x=96
C) 7^x+2+2.7^x-1=345
C) (x-1)^3=-125
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(2x+1\right)^2=25\)
\(\Rightarrow2x+1\in\left\{-5;5\right\}\)
\(\Rightarrow2x\in\left\{-6;4\right\}\)
\(\Rightarrow x\in\left\{-3;2\right\}\)
Vậy..
\(\left(x-1\right)^3=-125\)
\(\left(x-1\right)^3=-5^3\)
\(x-1=-5\)
\(x=-4\)
Vậy...
\(7^{x+2}.2.7^{x-1}=345\)
\(7^x.\left(7^2+\dfrac{2}{7}\right)=345\)
\(7x=7\)
\(x=1\)
Vậy...
a) (2x+1)2=25
(2x+1)2= (+-5)2
=> 2x+1 = 5 hoặc 2x + 1 = -5
2x = 4 hoặc 2x = -6
x= 2 hoặc x=-3
b) (x-1)3=-125
(x-1)3= (-5)3
=> x-1 = -5
x= -4
c) 2x+2-2x=96
2x.22 - 2x = 96
2x( 4-1) = 96
2x = 96 : 3
2x= 32
2x = 25
=> x= 5
d) 7x+2+2.7x-1=345
7x-1 . 73 + 2.7x-1=345
7x-1( 73 +2) = 345
7x-1 . 345 = 345
7x-1 =1
=> x-1 = 0
=> x= 1
a: \(\left(2x-3\right)^2=\left|3-2x\right|\)
=>\(\left\{{}\begin{matrix}\left|2x-3\right|>=0\\\left(2x-3\right)^2=\left(2x-3\right)\end{matrix}\right.\Leftrightarrow\left(2x-3\right)^2-\left(2x-3\right)=0\)
=>\(\left(2x-3\right)\left(2x-3-1\right)=0\)
=>\(\left(2x-3\right)\left(2x-4\right)=0\)
=>\(\left[{}\begin{matrix}2x-3=0\\2x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=2\end{matrix}\right.\)
b: \(\left(x-1\right)^2+\left(2x-1\right)^2=0\)
=>\(x^2-2x+1+4x^2-4x+1=0\)
=>\(5x^2-6x+2=0\)
\(\Delta=\left(-6\right)^2-4\cdot5\cdot2=36-20\cdot2=-4< 0\)
=>Phương trình vô nghiệm
c: ĐKXĐ: x>=0
\(x-2\sqrt{x}=0\)
=>\(\sqrt{x}\cdot\sqrt{x}-2\cdot\sqrt{x}=0\)
=>\(\sqrt{x}\left(\sqrt{x}-2\right)=0\)
=>\(\left[{}\begin{matrix}\sqrt{x}=0\\\sqrt{x}-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(nhận\right)\\x=4\left(nhận\right)\end{matrix}\right.\)
d: \(\left(x-1\right)^2+\dfrac{1}{7}=0\)
mà \(\left(x-1\right)^2+\dfrac{1}{7}>=\dfrac{1}{7}>0\forall x\)
nên \(x\in\varnothing\)
\(a,\left(x-5\right)\left(2x+3\right)=x^2-25\\ \Leftrightarrow a,\left(x-5\right)\left(2x+3\right)-\left(x-5\right)\left(x+5\right)=0\\ \Leftrightarrow\left(x-5\right)\left(2x+3-x+5\right)=0\\ \Leftrightarrow\left(x-5\right)\left(x+8\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=5\\x=-8\end{matrix}\right.\\ b,\dfrac{2x}{3}+\dfrac{2x-1}{6}=\dfrac{x-1}{2}\\ \Leftrightarrow\dfrac{4x}{6}+\dfrac{2x-1}{6}-\dfrac{3\left(x-1\right)}{6}=0\\ \Leftrightarrow4x+2x-1-3x+3=0\\ \Leftrightarrow3x+2=0\\ \Leftrightarrow x=-\dfrac{2}{3}\)
a: \(\left(\dfrac{1}{4}-x\right)\left(x+\dfrac{2}{5}\right)=0\)
=>\(\left[{}\begin{matrix}\dfrac{1}{4}-x=0\\x+\dfrac{2}{5}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{4}\\x=-\dfrac{2}{5}\end{matrix}\right.\)
b: \(\left|2x+1\right|+\dfrac{3}{2}=2\)
=>\(\left|2x+1\right|=\dfrac{1}{2}\)
=>\(\left[{}\begin{matrix}2x+1=\dfrac{1}{2}\\2x+1=-\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=-\dfrac{1}{2}\\2x=-\dfrac{3}{2}\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=-\dfrac{1}{4}\\x=-\dfrac{3}{4}\end{matrix}\right.\)
c: (2x-3)2=36
=>\(\left[{}\begin{matrix}2x-3=6\\2x-3=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=9\\2x=-3\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=\dfrac{9}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\)
d: \(7^{x+2}+2\cdot7^x=357\)
=>\(7^x\cdot49+7^x\cdot2=357\)
=>\(7^x=7\)
=>x=1
a) \(\left(\dfrac{1}{4}-x\right)\left(x+\dfrac{2}{5}\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}\dfrac{1}{4}-x=0\\x+\dfrac{2}{5}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{4}\\x=-\dfrac{2}{5}\end{matrix}\right.\)
\(---\)
b) \(\left|2x+1\right| +\dfrac{2}{3}=2\)
\( \Rightarrow\left|2x+1\right|=2-\dfrac{2}{3}\)
\(\Rightarrow\left|2x+1\right|=\dfrac{4}{3}\)
\(\Rightarrow\left[{}\begin{matrix}2x+1=\dfrac{4}{3}\\2x+1=-\dfrac{4}{3}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=\dfrac{1}{3}\\2x=-\dfrac{7}{3}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{6}\\x=-\dfrac{7}{6}\end{matrix}\right.\)
\(---\)
c) \(\left(2x-3\right)^2=36\)
\(\Rightarrow\left(2x-3\right)^2=\left(\pm6\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}2x-3=6\\2x-3=-6\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x=9\\2x=-3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{9}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\)
\(---\)
d) \(7^{x+2}+2\cdot7^x=357\)
\(\Rightarrow7^x\cdot7^2+2\cdot7^x=357\)
\(\Rightarrow7^x\cdot\left(7^2+2\right)=357\)
\(\Rightarrow7^x\cdot\left(49+2\right)=357\)
\(\Rightarrow7^x\cdot51=357\)
\(\Rightarrow7^x=357:51\)
\(\Rightarrow7^x=7\)
\(\Rightarrow x=1\)
a) Ta có: \(x^2-2x+1=25\)
\(\Leftrightarrow\left(x-1\right)^2=25\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=5\\x-1=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=-4\end{matrix}\right.\)
b) Ta có: \(\left(5x+1\right)^2-\left(5x-3\right)\left(5x+3\right)=30\)
\(\Leftrightarrow25x^2+10x+1-25x^2+9=30\)
\(\Leftrightarrow10x=20\)
hay x=2
c) Ta có: \(\left(x-1\right)\left(x^2+x+1\right)-x\left(x+2\right)\left(x-2\right)=5\)
\(\Leftrightarrow x^3-1-x\left(x^2-4\right)=5\)
\(\Leftrightarrow x^3-1-x^3+4x=5\)
\(\Leftrightarrow4x=6\)
hay \(x=\dfrac{3}{2}\)
d) Ta có: \(\left(x-2\right)^3-\left(x-3\right)\left(x^2+3x+9\right)+6\left(x+1\right)^2=15\)
\(\Leftrightarrow x^3-6x^2+12x-8-x^3+27+6\left(x^2+2x+1\right)=15\)
\(\Leftrightarrow-6x^2+12x+19+6x^2+12x+6=15\)
\(\Leftrightarrow24x=-10\)
hay \(x=-\dfrac{5}{12}\)
a,\(< =>\left(x-1\right)^2-5^2=0< =>\left(x-1-5\right)\left(x-1+5\right)=0\)
\(< =>\left(x-6\right)\left(x+4\right)=0=>\left[{}\begin{matrix}x=6\\x=-4\end{matrix}\right.\)
b,\(< =>25x^2+10x+1-25x^2+9-30=0\)
\(< =>10x-20=0< =>10\left(x-2\right)=0< =>x=2\)
c,\(< =>x^3-1-x\left(x^2-4\right)-5=0\)
\(< =>x^3-1-x^2+4x-5=0< =>4x-6=0< =>x=\dfrac{6}{4}\)\(d,< =>\left(x-2\right)^3-x^3+3^3+6x^2+12x+6-15=0\)
\(< =>x^3-6x^2+12x-x^3+6x^2+12x+10=0\)
\(< =>24x+10=0< =>x=-\dfrac{5}{12}\)
a: Ta có: \(x^2-2x+1=25\)
\(\Leftrightarrow\left(x-4\right)\left(x-6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=6\end{matrix}\right.\)
b: Ta có: \(\left(5x+1\right)^2-\left(5x-3\right)\left(5x+3\right)=30\)
\(\Leftrightarrow25x^2+10x+1-25x^2+9=30\)
\(\Leftrightarrow10x=20\)
hay x=2
c: Ta có: \(\left(x-1\right)\left(x^2+x+1\right)-x\left(x+2\right)\left(x-2\right)=5\)
\(\Leftrightarrow x^3-1-x\left(x^2-4\right)=5\)
\(\Leftrightarrow x^3-1-x^3+4x=5\)
\(\Leftrightarrow4x=6\)
hay \(x=\dfrac{3}{2}\)
\(a,\Leftrightarrow x^3=\dfrac{20}{3}\Leftrightarrow x=\sqrt[3]{\dfrac{20}{3}}\\ b,\Leftrightarrow x-1=9\Leftrightarrow x=10\\ c,\Leftrightarrow\left[{}\begin{matrix}x-1=5\\x-1=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=-4\end{matrix}\right.\\ d,\Leftrightarrow2x+1=5\Leftrightarrow x=2\\ e,\Leftrightarrow2x-4=4\Leftrightarrow x=4\)
Câu a) xem lại đề giùm nhé em
b) \(\left(x-1\right)^3=9^3\)
\(x-1=9\)
\(x=10\)
Vậy \(x=10\)
c) \(\left(x-1\right)^2=25\)
\(x-1=5\) hoặc \(x-1=-5\)
* \(x-1=5\)
\(x=6\)
* \(x-1=-5\)
\(x=-4\)
Vậy \(x=-4\); \(x=6\)
d) \(\left(2x+1\right)^3=125\)
\(\left(2x+1\right)^3=5^3\)
\(2x+1=5\)
\(2x=4\)
\(x=2\)
Vậy \(x=2\)
e) Sửa đề: \(\left(2x+4\right)^3=64\)
\(\left(2x+4\right)^3=4^3\)
\(2x+4=4\)
\(2x=0\)
\(x=0\)
Vậy \(x=0\)
(2x+1)^2=5^2
2x+1=5
x=2
(x-1)^3=-125
x-1=-5
x=-4
a)
(2x+1)2=25
=> \(\left[\begin{array}{nghiempt}2x+1=5\\2x+1=-5\end{array}\right.\)
=>\(\left[\begin{array}{nghiempt}2x=4\\2x=-6\end{array}\right.\Rightarrow\left[\begin{array}{nghiempt}x=2\\x=-3\end{array}\right.\)
d)
(x-1)3=-125
=> x-1=-5
=> x=-4
còn câu b và c bạn viết đề rõ hơn nha