chứng minh đa thức sau không có nghiệm
x2-3x+4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2-3x+4=x^2-2.x.\frac{3}{2}+\frac{9}{4}+4-\frac{9}{4}.\)
\(=\left(x-\frac{3}{2}\right)^2+\frac{7}{4}>0\)( vô nghiệm )
\(\Rightarrow x^2-3x+4\)vô nghiệm
a. ta có
(2x − 3)2 ≥ 0
=> (2x − 3)2 + 10 > 0
=> đa thức trên ko có nghiệm
b. ta có:
x2 ≥ 0
4 > 0
=> x2 + 4 > 0
=> x2 + 2x + 4 > 0
=> đa thức trên ko có nghiệm
câu c mik vẫn chưa biết chứng minh vì bài này lần đầu tiên làm. Sorry bạn !!!
Giả sử x=a là nghiệm nguyên f(a)
\(\Leftrightarrow-4a^4+3a^3-2a^2+a-1=0\\ \Leftrightarrow-4a^4-2a^2+4a^3-a\left(a^2-1\right)=1\\ \Leftrightarrow1=-4a^4+4a^3-2a^2-\left(a+1\right)a\left(a-1\right)\left(1\right)\)
Vì a nguyên nên \(\left(a+1\right)a⋮2\Rightarrow\left(a+1\right)a\left(a-1\right)⋮2\)
Mà \(-4a^4+4a^3-2a^2⋮2\)
\(\Rightarrow-4a^4+4a^3-2a^2-\left(a-1\right)a\left(a+1\right)⋮2\) kết hợp (1)
\(\Rightarrow1⋮2\left(VL\right)\)
Vậy không tồn tại nghiệm nguyên của f(x)
Ta thấy: 3x^2 lớn hơn hoặc bằng 0 với mọi x
6x lớn hơn hoặc bằng 0 với mọi x
=> 3x^2+6x+11 >11
=> Đa thức A(x) k có nghiệm
Vậy đa thức A(x) k có nghiệm.
\(A\left(x\right)=3x^2+6x+11\)
\(A\left(x\right)=2x^2+\left(x^2+6x+11\right)\)
\(A\left(x\right)=2x^2+\left(x^2+3x+3x+3^2\right)+2\)
\(A\left(x\right)=2x^2+x\left(x+3\right)+3\left(x+3\right)+2\)
\(A\left(x\right)=2x^2+\left(x+3\right)\left(x+3\right)+2\)
\(A\left(x\right)=2x^2+\left(x+3\right)^2+2\)
Có \(2x^2\ge0\)và \(\left(x+3\right)^2\ge0\)
=> \(2x^2+\left(x+3\right)^2\ge0\)
=> \(2x^2+\left(x+3\right)^2+2\ge2\)
=> \(2x^2+\left(x+3\right)^2+2\ne0\)
=> \(A\left(x\right)\ne0\)
Vậy đa thức \(A\left(x\right)\)không có nghiệm
b) 4x2 - 3x - 1
vì 4x2 lớn hơn hoặc bằng 0
=> 4x2 - 3x - 1 lớn hơn hoặc bằng 1 > 0
=> đa thức này ko có nghiệm
t i c k mk nhoa oa oa buồn ngủ rùi ^ 0 ^ !!!!
Giả sử đa thức P(x) có nghiệm nguyên
=>P(x) có nghiệm chia hết cho 1 hoặc -1
=>1 và -1 là nghiệm
+) Nếu x=1
⇒P(1)=1^4−3.1^3−4.1^2−2.1−1⇒P(1)=1^4-3.1^3-4.1^2-2.1-1
⇒P(1)=1−3.1−4.1−2.1−1⇒P(1)=1-3.1-4.1-2.1-1
⇒P(1)=1−3−4−2−1⇒P(1)=1-3-4-2-1
⇒P(1)=−9≠0⇒P(1)=-9≠0
⇒x=1 không phải là nghiệm của P(x)P(x)
+) Nếu x=−1
⇒P(−1)=(−1)^4−3.(−1)^3−4.(−1)^2−2.(−1)−1⇒P(-1)=(-1)^4-3.(-1)^3-4.(-1)^2-2.(-1)-1
⇒P(−1)=1−3.(−1)−4.1−(−2)−1⇒P(-1)=1-3.(-1)-4.1-(-2)-1
⇒P(−1)=1+3−4+2−1⇒P(-1)=1+3-4+2-1
⇒P(−1)=1≠0⇒P(-1)=1≠0
⇒x=−1 không phải là nghiệm của P(x)P(x)
Vậy P(x) không có nghiệm là số nguyên
\(x^2-3x+4\)
\(=x^2-2.x.\frac{3}{2}+\left(\frac{2}{3}\right)^2+\frac{7}{4}\)
\(=\left(x-\frac{3}{2}\right)^2+\frac{7}{4}\)
Vì \(\left(x-\frac{3}{2}\right)^2\ge0;\frac{7}{4}>0\)
=> Đa thưc vô nghiệm
\(x^2-3x+4=x^2-2.x.\frac{3}{2}+\frac{9}{4}+4-\frac{9}{4}\)
\(=\left(x-\frac{3}{2}\right)^2+\frac{7}{4}>0\) ( vô nghiệm )
Vậy \(x^2-3x+4\) vô nghiệm