K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8 2016

\(x^2-3x+4\)

\(=x^2-2.x.\frac{3}{2}+\left(\frac{2}{3}\right)^2+\frac{7}{4}\)

\(=\left(x-\frac{3}{2}\right)^2+\frac{7}{4}\)

Vì \(\left(x-\frac{3}{2}\right)^2\ge0;\frac{7}{4}>0\)

=> Đa thưc vô nghiệm

13 tháng 8 2016

\(x^2-3x+4=x^2-2.x.\frac{3}{2}+\frac{9}{4}+4-\frac{9}{4}\)

\(=\left(x-\frac{3}{2}\right)^2+\frac{7}{4}>0\) ( vô nghiệm )

Vậy \(x^2-3x+4\) vô nghiệm

 

13 tháng 8 2016

\(x^2-3x+4=x^2-2.x.\frac{3}{2}+\frac{9}{4}+4-\frac{9}{4}.\)

\(=\left(x-\frac{3}{2}\right)^2+\frac{7}{4}>0\)( vô nghiệm ) 

\(\Rightarrow x^2-3x+4\)vô nghiệm 

13 tháng 8 2016

\(x^2-3x+4=0\\ x^2-2.\frac{3}{2}x+\frac{9}{4}+\frac{7}{4}=0\\ \left(x-\frac{3}{2}\right)^2+\frac{7}{4}=0\)

\(\left(x-\frac{3}{2}\right)^2+\frac{7}{4}>e\Rightarrow xvonghiem\)

8 tháng 5 2022

a. ta có 

    (2x − 3)2 ≥ 0

=>  (2x − 3)2 + 10 > 0

=> đa thức trên ko có nghiệm

b. ta có:

  x2 ≥ 0

    4 > 0

=> x2 + 4 > 0

=> x2 + 2x + 4 > 0

=> đa thức trên ko có nghiệm

câu c mik vẫn chưa biết chứng minh vì bài này lần đầu tiên làm. Sorry bạn !!!

 

22 tháng 4 2018
vì3x^4>hoặc=0 voi moi x va x^2>hoac=0 voi moi x =>3x^4+x^2>hoac=0 voi moi x =>3x^4+x^2+2018>hoặc=0 voi moi x =>3x^4+x^2+2018>0 voi moi x => da thuc A(x)=3x^4+x^2+2018 k co nhiệm
10 tháng 4 2021

Giả sử x=a là nghiệm nguyên f(a)

\(\Leftrightarrow-4a^4+3a^3-2a^2+a-1=0\\ \Leftrightarrow-4a^4-2a^2+4a^3-a\left(a^2-1\right)=1\\ \Leftrightarrow1=-4a^4+4a^3-2a^2-\left(a+1\right)a\left(a-1\right)\left(1\right)\)

Vì a nguyên nên \(\left(a+1\right)a⋮2\Rightarrow\left(a+1\right)a\left(a-1\right)⋮2\)

Mà \(-4a^4+4a^3-2a^2⋮2\)

\(\Rightarrow-4a^4+4a^3-2a^2-\left(a-1\right)a\left(a+1\right)⋮2\) kết hợp (1)

\(\Rightarrow1⋮2\left(VL\right)\)

Vậy không tồn tại nghiệm nguyên của f(x)

30 tháng 4 2018

Ta thấy: 3x^2 lớn hơn hoặc bằng 0 với mọi x

              6x lớn hơn hoặc bằng 0 với mọi x

         => 3x^2+6x+11 >11

         => Đa thức A(x) k có nghiệm

  Vậy đa thức A(x) k có nghiệm.

30 tháng 4 2018

\(A\left(x\right)=3x^2+6x+11\)

\(A\left(x\right)=2x^2+\left(x^2+6x+11\right)\)

\(A\left(x\right)=2x^2+\left(x^2+3x+3x+3^2\right)+2\)

\(A\left(x\right)=2x^2+x\left(x+3\right)+3\left(x+3\right)+2\)

\(A\left(x\right)=2x^2+\left(x+3\right)\left(x+3\right)+2\)

\(A\left(x\right)=2x^2+\left(x+3\right)^2+2\)

Có \(2x^2\ge0\)và \(\left(x+3\right)^2\ge0\)

=> \(2x^2+\left(x+3\right)^2\ge0\)

=> \(2x^2+\left(x+3\right)^2+2\ge2\)

=> \(2x^2+\left(x+3\right)^2+2\ne0\)

=> \(A\left(x\right)\ne0\)

Vậy đa thức \(A\left(x\right)\)không có nghiệm

b) 4x2 - 3x - 1

vì 4x2 lớn hơn hoặc bằng 0

=> 4x2 - 3x - 1 lớn hơn hoặc bằng 1 > 0

=> đa thức này ko có nghiệm 

t i c k mk nhoa oa oa buồn ngủ rùi ^ 0 ^ !!!!

Giả sử đa thức P(x) có nghiệm nguyên 

=>P(x) có nghiệm chia hết cho 1 hoặc -1

=>1 và -1 là nghiệm

+) Nếu x=1

⇒P(1)=1^4−3.1^3−4.1^2−2.1−1⇒P(1)=1^4-3.1^3-4.1^2-2.1-1

⇒P(1)=1−3.1−4.1−2.1−1⇒P(1)=1-3.1-4.1-2.1-1

⇒P(1)=1−3−4−2−1⇒P(1)=1-3-4-2-1

⇒P(1)=−9≠0⇒P(1)=-9≠0

⇒x=1 không phải là nghiệm của P(x)P(x)

+) Nếu x=−1

⇒P(−1)=(−1)^4−3.(−1)^3−4.(−1)^2−2.(−1)−1⇒P(-1)=(-1)^4-3.(-1)^3-4.(-1)^2-2.(-1)-1

⇒P(−1)=1−3.(−1)−4.1−(−2)−1⇒P(-1)=1-3.(-1)-4.1-(-2)-1

⇒P(−1)=1+3−4+2−1⇒P(-1)=1+3-4+2-1

⇒P(−1)=1≠0⇒P(-1)=1≠0

⇒x=−1 không phải là nghiệm của P(x)P(x)

Vậy P(x) không có nghiệm là số nguyên