hãy chứng minh rằng a2=1???????????? với a thuộc R
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: a^3-a=a(a^2-1)
=a(a-1)(a+1)
Vì a;a-1;a+1 là ba số liên tiếp
nên a(a-1)(a+1) chia hết cho 3!=6
=>a^3-a chia hết cho 6
a) \(A=x^2-2x+2=\left(x-1\right)^2+1>0\forall x\inℝ\)
b) \(x-x^2-3=-\left(x^2-x+3\right)\)
\(=-\left(x^2-x+\frac{1}{4}+\frac{11}{4}\right)\)
\(=-\left[\left(x-\frac{1}{2}\right)^2+\frac{11}{4}\right]\)
\(=-\left[\left(x-\frac{1}{2}\right)^2\right]-\frac{11}{4}\le\frac{-11}{4}< 0\forall x\inℝ\)
Với mọi \(x\in R\) ta có :
\(\frac{a}{a^2+1}\le\frac{1}{2}\Leftrightarrow\frac{2a}{2\left(a^2+1\right)}\le\frac{a^2+1}{2\left(a^2+1\right)}\)
\(\Leftrightarrow2a\le a^2+1\) ( do \(2\left(a^2+1\right)>0\) )
\(\Leftrightarrow a^2-2a+1\ge0\Leftrightarrow\left(a-1\right)^2\ge0\) là bất đẳng thức đúng :
Vậy \(\frac{a}{a^2+1}\le\frac{1}{2}\) với mọi \(a\in R\)
Chúc bạn học tốt !!!
Miền giá trị thử ạ:)
Đặt \(f=\frac{a}{a^2+1}\)
Ta có:\(f\left(a^2+1\right)=a\)
\(\Leftrightarrow fa^2+f-a=0\)
Với \(f=0\Rightarrow a=0\)
Với \(f\ne0\) thì \(f\) là pt bậc 2 ẩn a nên \(\Delta_a=1-4f^2\ge0\Leftrightarrow-\frac{1}{2}\le\left|f\right|\le\frac{1}{2}\)
\(\left|f\right|\le\frac{1}{2}\) Dấu "=" xảy ra tại \(a=\frac{1}{2f}=1\)
P/S:E mới học nên ko chắc đâu ạ
Để \(\frac{2a+2b}{ab+1}\) là bình phương của 1 số nguyên thì 2a + 2b chia hết cho ab + 1; mà ab + 1 chia hết cho 2a + 2b => ab + 1 = 2b + 2a
=> \(\frac{2a+2b}{ab+1}\)=1 = 12
bạn đã k đủ 3k hẹn lần sau
Bai 1. tinh chat bac cau
bai 2> a) x=+-2003
b) >x=0
c)x=y=0
\(a^2\left(a+1\right)+2a\left(a+1\right)=a\left(a+1\right)\left(a+2\right)\) là 3 số nguyên liên tiếp nên chia hết cho 6
1 Xét ΔAED có AE=AD và góc EAD=90 độ
=>ΔAED vuôg cân tại A
2: góc EDA+góc CBA=45+45=90 độ
=>DE vuông góc BC
3: Xét ΔCBD có
CA,DE là đường cao
CA cắt DE tại E
=>E là trực tâm
=>BE vuông góc DC