K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 8 2016

Ta có : \(S=\frac{1}{1+a+ab}+\frac{1}{1+b+bc}+\frac{1}{1+c+ac}=\frac{c}{c+ac+abc}+\frac{ac}{ac+abc+abc^2}+\frac{1}{1+c+ac}\)

\(=\frac{c}{1+c+ac}+\frac{ac}{1+c+ac}+\frac{1}{1+c+ac}=\frac{1+c+ac}{1+c+ac}=1\)

 

16 tháng 12 2021

Với \(a=b=c=0\Leftrightarrow S=abc=0\)

Với \(a,b,c\ne0\)

Ta có \(\dfrac{a}{1+ab}=\dfrac{b}{1+bc}=\dfrac{c}{1+ac}\Leftrightarrow\dfrac{1+ab}{a}=\dfrac{1+bc}{b}=\dfrac{1+ac}{c}\)

\(\Leftrightarrow\dfrac{1}{a}+b=\dfrac{1}{b}+c=\dfrac{1}{c}+a\)

\(\Leftrightarrow\left\{{}\begin{matrix}a-b=\dfrac{1}{a}-\dfrac{1}{c}=\dfrac{c-a}{ac}\\b-c=\dfrac{1}{b}-\dfrac{1}{a}=\dfrac{a-b}{ab}\\c-a=\dfrac{1}{c}-\dfrac{1}{b}=\dfrac{b-c}{bc}\end{matrix}\right.\)

Nhân vế theo vế ta đc \(\left(a-b\right)\left(b-c\right)\left(c-a\right)=\dfrac{\left(a-b\right)\left(b-c\right)\left(c-a\right)}{ab\cdot bc\cdot ca}\)

\(\Leftrightarrow\left(abc\right)^2=1\Leftrightarrow\left[{}\begin{matrix}abc=1\\abc=-1\end{matrix}\right.\)

4 tháng 7 2016

Vì 0:0 = math.eror => ko tồn tại.......

4 tháng 7 2016

Vì mọi phân số có mẫu =0 ko tồn tại <-- định lý này chắc hơn dãy tỉ số = nhau nhiều @@

4 tháng 7 2016

Theo mình nghĩ là do các phân sô như đã nêu không có tỉ lệ thuận với nhau (không có đại lượng rõ ràng) 

4 tháng 7 2016

giống câu hỏi của trần thùy dung

23 tháng 3 2018

Ngu người 

24 tháng 3 2018

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{\overline{ab}+\overline{bc}}{a+b}=\frac{\overline{bc}+\overline{ca}}{b+c}=\frac{\overline{ca}+\overline{ab}}{c+a}=\frac{\overline{ab}+\overline{bc}+\overline{bc}+\overline{ca}+\overline{ca}+\overline{ab}}{a+b+b+c+c+a}=\frac{2\left(\overline{ab}+\overline{bc}+\overline{ca}\right)}{2\left(a+b+c\right)}=\frac{\overline{ab}+\overline{bc}+\overline{ca}}{a+b+c}\)

\(=\frac{10a+b+10b+c+10c+a}{a+b+c}=\frac{11a+11b+11c}{a+b+c}=\frac{11\left(a+b+c\right)}{a+b+c}=11\)

Lại có : \(P=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=\frac{a+b}{b}.\frac{b+c}{c}.\frac{a+c}{a}\)

+) Nếu \(a+b+c=0\) : 

\(\Rightarrow\)\(a+b=-c\)

\(\Rightarrow\)\(b+c=-a\)

\(\Rightarrow\)\(a+c=-b\)

Thay \(a+b=-c\)\(;\)\(b+c=-a\) và \(a+c=-b\) vào \(\frac{a+b}{b}.\frac{b+c}{c}.\frac{a+c}{a}\) ta được : 

\(\frac{-c}{b}.\frac{-a}{c}.\frac{-b}{a}=\frac{-\left(abc\right)}{abc}=-1\)

+) Nếu \(a+b+c\ne0\) : 

Do đó : 

\(\frac{\overline{ab}+\overline{bc}}{a+b}=11\)\(\Rightarrow\)\(10a+11b+c=11a+11b\)\(\Rightarrow\)\(c=a\)\(\left(1\right)\)

\(\frac{\overline{bc}+\overline{ca}}{b+c}=11\)\(\Rightarrow\)\(10b+11c+a=11b+11c\)\(\Rightarrow\)\(a=b\)\(\left(2\right)\)

\(\frac{\overline{ca}+\overline{ab}}{c+a}=11\)\(\Rightarrow\)\(10c+11a+b=11c+11a\)\(\Rightarrow\)\(b=c\)\(\left(3\right)\)

Từ (1), (2) và (3) suy ra : 

\(a=b=c\)

Suy ra : 

\(P=\frac{a+b}{b}.\frac{b+c}{c}.\frac{a+c}{a}=\frac{b+b}{b}.\frac{c+c}{c}.\frac{a+a}{a}=\frac{2b}{b}.\frac{2c}{c}.\frac{2a}{a}=2.2.2=8\)

Vậy \(P=-1\) hoặc \(P=8\)

Chúc bạn học tốt ~ 

5 tháng 7 2016

\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)(ĐK b khác d;b khác -d)

Nói như bạn thì:

\(\frac{1}{1}=\frac{2}{2}=\frac{3}{3}=\frac{1+2}{1+2}\)

3 =1+2 => ko có bạn quên điều kiện r :D

21 tháng 10 2016

2) Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\frac{ab}{b}=\frac{bc}{c}=\frac{ca}{a}=\frac{ab+bc+ca}{b+c+a}=\frac{\left(10a+b\right)+\left(10b+c\right)+\left(10c+a\right)}{a+b+c}=\frac{11.\left(a+b+c\right)}{a+b+c}=11\)

\(\Rightarrow\begin{cases}ab=11b\\bc=11c\\ca=11a\end{cases}\)\(\Rightarrow\begin{cases}10a+b=11b\\10b+c=11c\\10c+a=11a\end{cases}\)\(\Rightarrow\begin{cases}10a=10b\\10b=10c\\10c=10a\end{cases}\)\(\Rightarrow10a=10b=10c\)

=> a = b = c (đpcm)

 

 

 

 

 

21 tháng 10 2016

soyeon_Tiểubàng giải bạn giúp bn ấy ik trong đó có câu 2 mk cần ó

Ta có: \(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ac+c+1}\)

\(=\frac{a}{ab+a+abc}+\frac{b}{bc+b+1}+\frac{bc}{abc+bc+b}\)

\(=\frac{1}{b+1+bc}+\frac{b}{bc+b+1}+\frac{bc}{1+bc+b}\)

\(=\frac{1+b+bc}{bc+b+1}\)

\(=1\)

14 tháng 1 2018

Xét : a/ab+a+1 = a/ab+a+abc = 1/b+bc+1

        c/ac+c+1 = bc/abc+bc+b = bc/bc+b+1

=> S = 1+b+bc/bc+b+1 = 1

Vậy S = 1

Tk mk nha

2 tháng 4 2019

ko dc nha bn

2 tháng 4 2019

thanks bn nhìu nha