Cho hình chữ nhật ABCM, vẽ BD vuông góc với AC. Gọi E, I, H thứ tự là trung điểm của BD, DM, AB. Chứng minh rằng: AE vuông góc với HI
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải ở đây: https://sites.google.com/site/123onthi/toan8
a: Xét tứ giác MHKD có
\(\widehat{MHK}=\widehat{MDK}=\widehat{DKH}=90^0\)
Do đó: MHKD là hình chữ nhật
b: Xét tứ giác ADKB có
\(\widehat{DKB}+\widehat{DAB}=180^0\)
=>ADKB nội tiếp
=>\(\widehat{AKB}=\widehat{ADB}=45^0\)
Xét ΔHAK vuông tại H có \(\widehat{HKA}=45^0\)
nên ΔHAK vuông cân tại H
=>HA=HK
(g là góc)
Xét tg ABC,có:
AB=AC
=>tg ABC cân tại A
=>gABC = gACB
a)Xét tg BEC và tg CDB ,có:
BC:chung
gBEC =gCDB =90*(vì EC vuông gAB,BD vuông gAC)
gEBC = gDCB(cmt)
=>tg BEC = tg CDB(ch-gn)
=>BD=EC
b)Theo phần a,ta có:tg BEC = tg CDB(ch-gn)
=>gDBC=gECB(2 góc tương ứng)
=>tg BIC cân tại I
=>BI=CI
mà EI+IC=EC và DI+BI=BD(vì I là gđ của BD và EC) và BD=EC(theo phần a)
=>EI = DI
c)Xét tg ABC ,có:
AB=AC(gt)
BI=CI(cmt)
BH=CH(vì H là trung điểm của BC)
=>Ba điểm A, I, H thẳng hàng
(g là góc)
Xét tg ABC,có:
AB=AC
=>tg ABC cân tại A
=>gABC = gACB
a)Xét tg BEC và tg CDB ,có:
BC:chung
gBEC =gCDB =90*(vì EC vuông gAB,BD vuông gAC)
gEBC = gDCB(cmt)
=>tg BEC = tg CDB(ch-gn)
=>BD=EC
b)Theo phần a,ta có:tg BEC = tg CDB(ch-gn)
=>gDBC=gECB(2 góc tương ứng)
=>tg BIC cân tại I
=>BI=CI
mà EI+IC=EC và DI+BI=BD(vì I là gđ của BD và EC) và BD=EC(theo phần a)
=>EI = DI
c)Xét tg ABC ,có:
AB=AC(gt)
BI=CI(cmt)
BH=CH(vì H là trung điểm của BC)
=>Ba điểm A, I, H thẳng hàng
Xét ΔABD có
H,O lần lượt là trung điểm của BA,BC
=>HO là đường trung bình của ΔABD
=>HO//AD và \(HO=\dfrac{AD}{2}\)
\(HO=\dfrac{AD}{2}\)
\(AK=\dfrac{AD}{2}\)
Do đó: HO=AK
Xét tứ giác AHOK có
HO//AK
HO=AK
Do đó: AHOK là hình bình hành
Hình bình hành AHOK có \(\widehat{HAK}=90^0\)
nên AHOK là hình chữ nhật
Gọi N là giao điểm của AO và HK
AHOK là hình chữ nhật
=>AO=HK và AO cắt HK tại trung điểm của mỗi đường
=>AO=HK và N là trung điểm chung của AO và HK
=>\(AN=ON=HN=KN=\dfrac{AO}{2}=\dfrac{HK}{2}\left(1\right)\)
ΔAMO vuông tại M
mà MN là đường trung tuyến
nên \(MN=\dfrac{AO}{2}\left(2\right)\)
Từ (1),(2) suy ra \(MN=\dfrac{HK}{2}\)
Xét ΔKMH có
MN là đường trung tuyến
\(MN=\dfrac{HK}{2}\)
Do đó: ΔKMH vuông tại M
=>KM\(\perp\)MH tại M