K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 11 2015

tick cho mình rồi mình lm cho

28 tháng 10 2018

ai thương em thì làm ny em nha trên 12 tủi

2 tháng 9 2019

Lời giải ở đây: https://sites.google.com/site/123onthi/toan8

a: Xét tứ giác MHKD có

\(\widehat{MHK}=\widehat{MDK}=\widehat{DKH}=90^0\)

Do đó: MHKD là hình chữ nhật

b: Xét tứ giác ADKB có

\(\widehat{DKB}+\widehat{DAB}=180^0\)

=>ADKB nội tiếp

=>\(\widehat{AKB}=\widehat{ADB}=45^0\)

Xét ΔHAK vuông tại H có \(\widehat{HKA}=45^0\)

nên ΔHAK vuông cân tại H

=>HA=HK

18 tháng 12 2018

(g là góc)

Xét tg ABC,có:

AB=AC

=>tg ABC cân tại A

=>gABC = gACB

a)Xét tg BEC và tg CDB ,có:

BC:chung

gBEC =gCDB =90*(vì EC vuông gAB,BD vuông gAC)

gEBC = gDCB(cmt)

=>tg BEC = tg CDB(ch-gn)

=>BD=EC

b)Theo phần a,ta có:tg BEC = tg CDB(ch-gn)

=>gDBC=gECB(2 góc tương ứng)

=>tg BIC cân tại I

=>BI=CI

mà EI+IC=EC và DI+BI=BD(vì I là gđ của BD và EC) và BD=EC(theo phần a)

=>EI = DI

c)Xét tg ABC ,có:

AB=AC(gt)

BI=CI(cmt)

BH=CH(vì H là trung điểm của BC)

=>Ba điểm A, I, H thẳng hàng

(g là góc)

Xét tg ABC,có:

AB=AC

=>tg ABC cân tại A

=>gABC = gACB

a)Xét tg BEC và tg CDB ,có:

BC:chung

gBEC =gCDB =90*(vì EC vuông gAB,BD vuông gAC)

gEBC = gDCB(cmt)

=>tg BEC = tg CDB(ch-gn)

=>BD=EC

b)Theo phần a,ta có:tg BEC = tg CDB(ch-gn)

=>gDBC=gECB(2 góc tương ứng)

=>tg BIC cân tại I

=>BI=CI

mà EI+IC=EC và DI+BI=BD(vì I là gđ của BD và EC) và BD=EC(theo phần a)

=>EI = DI

c)Xét tg ABC ,có:

AB=AC(gt)

BI=CI(cmt)

BH=CH(vì H là trung điểm của BC)

=>Ba điểm A, I, H thẳng hàng

10 tháng 9 2018

Đề của bạn sai. Bài này chắc giống với bài sau:

Câu hỏi của hoang duong sang - Toán lớp 8 - Học toán với OnlineMath

17 tháng 11 2023

Xét ΔABD có

H,O lần lượt là trung điểm của BA,BC

=>HO là đường trung bình của ΔABD

=>HO//AD và \(HO=\dfrac{AD}{2}\)

\(HO=\dfrac{AD}{2}\)

\(AK=\dfrac{AD}{2}\)

Do đó: HO=AK

Xét tứ giác AHOK có

HO//AK

HO=AK

Do đó: AHOK là hình bình hành

Hình bình hành AHOK có \(\widehat{HAK}=90^0\)

nên AHOK là hình chữ nhật

Gọi N là giao điểm của AO và HK

AHOK là hình chữ nhật

=>AO=HK và AO cắt HK tại trung điểm của mỗi đường

=>AO=HK và N là trung điểm chung của AO và HK

=>\(AN=ON=HN=KN=\dfrac{AO}{2}=\dfrac{HK}{2}\left(1\right)\)

ΔAMO vuông tại M

mà MN là đường trung tuyến

nên \(MN=\dfrac{AO}{2}\left(2\right)\)

Từ (1),(2) suy ra \(MN=\dfrac{HK}{2}\)

Xét ΔKMH có

MN là đường trung tuyến

\(MN=\dfrac{HK}{2}\)

Do đó: ΔKMH vuông tại M

=>KM\(\perp\)MH tại M