nếu thêm 3 vào mỗi chữ số của 1 số chính phương có 4 chữ số thì ta được 1 số chính phương . Tìm số đó
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
HT
0
A
18 tháng 12 2020
Đặt a=n^2, b=k^2 Để thay b-a=k^2-n^2=1111=101*11 =>(k-n)(k+n)=101*11 Giải hệ (k+n=101 ;k-n=11) =>k=56;n=45 a=2025;b=3136
DD
Đoàn Đức Hà
Giáo viên
9 tháng 6 2021
Số chính phương ban đầu là \(a=m^2\).
Số sau khi thêm \(3\)vào mỗi chữ số là \(a+3333=n^2\), (\(31< n< m< 100\))
Trừ vế với vế ta có:
\(3333=n^2-m^2=\left(n-m\right)\left(n+m\right)\)
Có \(3333=3.11.101\)kết hợp với điều kiện của \(m,n\)nên ta chỉ có một trường hợp đó là:
\(\hept{\begin{cases}n-m=3.11\\n+m=101\end{cases}}\Leftrightarrow\hept{\begin{cases}n=67\\m=34\end{cases}}\)
Số chính phương ban đầu là \(34^2=1156\).