K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 9 2015

P2\(=\left(\frac{1-A\sqrt{A}}{1-\sqrt{A}}+\sqrt{A}\right).\left(\frac{1-\sqrt{A}}{1-A}\right)^2\)\(=\left(\frac{1-A\sqrt{A}+\sqrt{A}-A}{1-\sqrt{A}}\right).\frac{\left(1-\sqrt{A}\right)^2}{\left(1-A\right)^2}\)\(=\frac{\left(\sqrt{A}+1\right)\left(1-A\right)}{1-\sqrt{A}}.\frac{\left(1-\sqrt{A}\right)^2}{\left(1-\sqrt{A}\right)^2\left(1+\sqrt{A}\right)^2}\)

\(=\left(\sqrt{A}+1\right)^2.\frac{1}{\left(1+\sqrt{A}\right)^2}=1\)

27 tháng 6 2020

Cảm ơn !

1 tháng 3 2017

Xem kỹ lại đề nhé! loại này đề lệch một tý thôi -->Không rút được !

p/s: Tránh truongf hợp làm đến cuối mới biết đề sai.

22 tháng 8 2019

c,Có x=\(\frac{1}{2}\left(\sqrt{\frac{1-a}{a}}-\sqrt{\frac{a}{1-a}}\right)\left(0< a< 1\right)\)

<=> \(x=\frac{1}{2}\left(\frac{\sqrt{1-a}}{\sqrt{a}}-\frac{\sqrt{a}}{\sqrt{1-a}}\right)\) (vì 0<a<1)

<=>\(x=\frac{1}{2}.\frac{\sqrt{1-a}^2-\sqrt{a}^2}{\sqrt{a}.\sqrt{1-a}}=\frac{1}{2}.\frac{1-a-a}{\sqrt{a\left(1-a\right)}}=\frac{1}{2}.\frac{1-2a}{\sqrt{a\left(1-a\right)}}=\frac{1-2a}{2\sqrt{a\left(1-a\right)}}\)(1)

<=> 1+x2=1+\(\frac{1}{4}.\frac{\left(1-2a\right)^2}{a\left(1-a\right)}\)= \(\frac{4a\left(1-a\right)+\left(1-2a\right)^2}{4a\left(1-a\right)}\)

<=> 1+x2=\(\frac{4a-4a^2+1-4a+4a^2}{4a\left(1-a\right)}=\frac{1}{4a\left(1-a\right)}\)>0

<=> \(\sqrt{1+x^2}=\frac{1}{2\sqrt{a\left(1-a\right)}}\) (2)

Thay (1),(2) vào C có:

C= \(\frac{2a.\frac{1}{2\sqrt{a\left(1-a\right)}}}{\frac{1}{2\sqrt{a\left(1-a\right)}}-\frac{1-2a}{2\sqrt{a\left(1-a\right)}}}=\frac{\frac{a}{\sqrt{a\left(1-a\right)}}}{\frac{1-1+2a}{2\sqrt{a\left(1-a\right)}}}=\frac{\frac{a}{\sqrt{a\left(1-a\right)}}}{\frac{2a}{2\sqrt{a\left(1-a\right)}}}=1\)

Vậy C=1

22 tháng 8 2019