cMột vật dao động điều hòa chu kì 2 (s). Tại thời điểm t0 vật có li độ 2 cm thì vận tốc của vật ở thời điểm t0 + 0,5 là
a. 2căn 3 (cm/s b.-2pi c2pi d...pi căn ba
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
+ Hai thời điểm t = 0 và t = 0,25T vuông pha nhau
+ Tại thời điểm t = 0 vật có đi độ x = 3 = 0,5A, sau đó 0,25T vật vẫn có li độ dương → ban đầu vật chuyển động theo chiều dương
Tai thời điểm t = 0,5s ta có
Li độ: x = 24.cos( π .0,5/2 + π ) = 24cos5 π /4 = -16,9 ≈ 17 cm
Vận tốc : v = - 24. π /2.sin( π .0,5/2 + π ) = -24.π/2.sin5 π /4 = 6 π 2 cm/s = 26,64 cm/s ≈ 27 cm/s
Gia tốc : a = - π / 2 2 .x = - π / 2 2 .(-16,9) = 41,6 cm/ s 2 ≈ 42 (cm/ s 2 )
Phương trình dạo động là: \(x=4cos\left(2\pi t+\dfrac{\pi}{3}\right)cm\)
Chu kì dao động là: \(T=\dfrac{2\pi}{\omega}=\dfrac{2\pi}{2\pi}=1\left(s\right)\Rightarrow0,25=\dfrac{T}{4}\)
Tại thời điểm t1, vật có li độ đang giảm và có giá trị 2cm
\(\Rightarrow\Delta\varphi=\dfrac{\pi}{3}\)
Tại thời điểm t2 = t1 + 0,25, vật quay một góc \(\dfrac{\pi}{2}\) so với thời điểm t1.
\(\Rightarrow x_2=-\dfrac{A\sqrt{3}}{2}=-\dfrac{4\sqrt{3}}{2}=-2\sqrt{3}\left(cm\right)\)
Chọn A.
Gọi phương trình dao động \(x=A\cos\left(\omega t+\varphi\right).\left(1\right)\)
Chu kỳ T là thời gian thực hiện 1 dao động toàn phần.
=> \(T=\frac{\Delta t}{N}=\frac{100}{50}=2s.\)
=> \(\omega=\frac{2\pi}{T}=\pi.\)(rad/s)
Áp dụng công thưc mối quan hệ giữa li độ tức thời x, biên độ A và vận tốc tại vị trí li độ đó v là
\(A^2=x^2+\frac{v^2}{\omega^2}=20^2+\frac{\left(4\pi\sqrt{3}\right)^2}{\pi^2}=448\Rightarrow A=21,166cm.\)
Mình nghĩ bài của bạn số hơi xấu?:))))
Li độ tại thời điểm \(\left(t+\frac{1}{3}\right)s\) là
Bạn có 2 cách để làm thay t ở công thức (1) bằng t+1/3s.
Tuy nhiên mình hay dùng cách 2 đường tròn như sau
Thời điểm t vật có li độ 20 cm thêm 1/3 s nữa thì góc quay được là \(\varphi=\frac{1}{3}.\pi.\)
Bài của bạn số xấu quá nên tìm góc cũng xấu.:))))))
\(\cos10^0=\frac{x}{A}\Rightarrow x=A\cos10^0\approx20,84cm.\)
THEO MÌNH LÀ A B C HOẶC D