1. Cho a,b \(\ge\) 0. Chứng minh \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{4}{a+b}\left(1\right)\). Áp dụng chứng minh các BĐT sau
a. \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge2\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\left(a,b,c\ge0\right)\)
b. \(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\ge2\left(\frac{1}{2a+b+c}+\frac{1}{a+2b+c}+\frac{1}{a+b+2c}\right)\)
a/ \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\) ; \(\frac{1}{b}+\frac{1}{c}\ge\frac{4}{b+c}\) ; \(\frac{1}{c}+\frac{1}{a}\ge\frac{4}{c+a}\)
Cộng theo vế :
\(2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge4\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\)
\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge2\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\)
b/ \(\frac{1}{a+b}+\frac{1}{b+c}\ge\frac{4}{a+2b+c}\)
\(\frac{1}{b+c}+\frac{1}{c+a}\ge\frac{4}{b+2c+a}\)
\(\frac{1}{c+a}+\frac{1}{a+b}\ge\frac{4}{c+b+2a}\)
Cộng theo vế :
\(2\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\ge4\left(\frac{1}{2a+b+c}+\frac{1}{2b+c+a}+\frac{1}{2c+a+b}\right)\)
\(\Leftrightarrow\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\ge2\left(\frac{1}{2a+b+c}+\frac{1}{a+2b+c}+\frac{1}{a+b+2c}\right)\)