\(\frac{\left(2.4.6.....2016\right).\left(2.4.6.....2016\right)}{\left(1.3.5.....2015\right).\left(3.5.7.....2017\right)}\) rút gọn bằng gì vậy?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Trường hợp 1: x<2015
A=2015-x+2016=4031-x
Trường hợp 2: x>=2015
A=x-2015+2016=x+1
b: Trường hợp 1: x<2015
B=2015-x+2016-x=4031-2x
Trường hợp 2: 2015<=x<2016
B=x-2015+2016-x=1
Trường hợp 3:x>=2016
B=x-2015+x+2016=2x-4031
\(B=\left(-5\right)^0+\left(-5\right)^1+\left(-5\right)^2+...+\left(-5\right)^{2017}\)
\(-5B=\left(-5\right)^1+\left(-5\right)^2+\left(-5\right)^3+...+\left(-5\right)^{2017}\)
\(-6B=\left(-5\right)^{2017}-1\)
\(B=\frac{\left(-5\right)^{2017}-1}{-6}\)
Ta có : B = (-5)^0 + (-5)^1 + ......+ (-5)^2017
(-5)B = (-5)^1 + (-5)^2 + .......+ (-5)^2018
(-4)B = (-5)^0- (-5)^2018
B = 1 - (-5)^2018 / (-4)
Nếu có sai sót gì mong các bạn bỏ qua
Bài 1:
ta có: \(B=\frac{12}{\left(2.4\right)^2}+\frac{20}{\left(4.6\right)^2}+...+\frac{388}{\left(96.98\right)^2}+\frac{396}{\left(98.100\right)^2}\)
\(B=\frac{4^2-2^2}{2^2.4^2}+\frac{6^2-4^2}{4^2.6^2}+...+\frac{98^2-96^2}{96^2.98^2}+\frac{100^2-98^2}{98^2.100^2}\)
\(B=\frac{1}{2^2}-\frac{1}{4^2}+\frac{1}{4^2}-\frac{1}{6^2}+...+\frac{1}{96^2}-\frac{1}{98^2}+\frac{1}{98^2}-\frac{1}{100^2}\)
\(B=\frac{1}{2^2}-\frac{1}{100^2}\)
\(B=\frac{1}{4}-\frac{1}{100^2}< \frac{1}{4}\)
\(\Rightarrow B< \frac{1}{4}\)
Bài 2:
ta có: \(B=\frac{2015+2016+2017}{2016+2017+2018}\)
\(B=\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\frac{2017}{2016+2017+2018}\)
mà \(\frac{2015}{2016}>\frac{2015}{2016+2017+2018}\)
\(\frac{2016}{2017}>\frac{2016}{2016+2017+2018}\)
\(\frac{2017}{2018}>\frac{2017}{2016+2017+2018}\)
\(\Rightarrow\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}>\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\frac{2017}{2016+2017+2018}\)
\(\Rightarrow A>B\)
Học tốt nhé bn !!
Ta có: \(B=4^{2017}+4^{2016}+...+4^2+4^1+4^0\)
\(\Leftrightarrow4\cdot B=4^{2018}+4^{2017}+...+4^3+4^2+4^1\)
\(\Leftrightarrow3\cdot B=4^{2018}-1\)
\(\Leftrightarrow A=165\cdot\dfrac{4^{2018}-1}{3}+55\)
\(\Leftrightarrow A=4^{2018}\)
Ta có: 1+(1+2)+(1+2+3)+...+(1+2+3+...+2017)=2017x1+2016x2+2015x3+...+2x2016+1x2017
=> K-2016=\(\frac{1+\left(1+2\right)+\left(1+2+3\right)+...+\left(1+2+3+...+2017\right)}{2017x1+2016x2+2015x3+...+2x2016+1x2017}\)=\(\frac{2017x1+2016x2+2015x3+...+2x2016+1x2017}{2017x1+2016x2+2015x3+...+2x2016+1x2017}=1\)
=> K=2016+1=2017
Toán tiếng anh hả bạn
Bài này thì bạn mình có thể giải được
Thank you
Ko rút gon được nữa đâu bạn CƯNG!