Cho các số 0 1 2 3 4 5 6 7. Hỏi từ các số trên lập được bao nhiêu số 2 chữ số khác nhau?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2:
\(\overline{abcd}\)
d có 1 cách chọn
a có 3 cách chọn
b có 2 cách chọn
c có 1 cách chọn
=>Có 3*2*1*1=6 cách
1: \(\overline{abc}\)
a có 3 cách
b có 3 cách
c có 2 cách
=>Có 3*3*2=18 cách
a: \(\overline{abc}\)
a có 3 cáhc
b có 4 cáhc
c có 4 cách
=>Có 3*4*4=48 cách
b: \(\overline{abcd}\)
a có 3 cách
b có 3 cách
c có 2 cách
d có 1 cách
=>Có 3*3*2=18 cách
c: \(\overline{abc}\)
c có 1 cách
a có 3 cách
b có 4 cách
=>Có 1*3*4=12 cách
d: \(\overline{abcd}\)
TH1: d=0
=>Có 3*4*4=48 cách
TH2: d<>0
d có 2 cách
a có 3 cách
b có 4 cách
c có 4 cách
=>Có 4*4*3*2=16*6=96 cách
=>Có 144 cách
Gọi số cần tìm có dạng . Vì chia hết cho 5 suy ra e =0 hoặc 5.
TH1. Với e=0
Nếu a=1; thì có 5 cách chọn b; 4 cách chọn c và 3 cách chọn d.
Theo quy tắc nhân có 1.5.4.3=60 số.
Tương tự nếu b=1; c=1 hoặc d=1 ta cũng có 60 số.
Trong trường hợp 1 có tất cả 60.4=240 số cần tìm.
TH2. Với e=5,
Nếu a=1 thì có 5 cách chọn b; 4 cách chọn c và 3 cách chọn c. Theo quy tắc nhân có 1.5.4.3=60 số.
Nếu b= 1 thì có 4 cách chon a( a khác 0); 4 cách chọn c và 3 cách chọn d suy ra có 1.4.4.3=48 số
Tương tự với c=1 hoặc d=1 cũng có 48 số
Trong trường hợp 2 có 60+3.48= 204.
Vậy có tất cả 204+240= 444 số cần tìm.
Chọn A.
Giả sử số đó là
Trường hợp 1: c=0 xếp 2 vào có 2 vị trí, chọn số xếp vào vị trí còn lại có 6 cách nên có 2.6 = 12 số thỏa mãn.
Trường hợp 2 c=5 . Với a=2 chọn b có 6 cách nên có 6 số thỏa mãn.
Với a khác 2 chọn a có 5 cách chọn, và tất nhiên b=2 nên có 5 số thỏa mãn.
Do đó có 12+6+5=23 số thỏa mãn.
Chọn D.
Hàng trăm nghìn: 8 cách chọn (trừ số 0)
Hàng chục nghìn: 8 cách chọn (trừ hàng trăm nghìn)
Hàng nghìn: 7 cách chọn (trừ hàng trăm nghìn, chục nghìn)
Hàng trăm: 6 cách chọn (trừ hàng trăm nghìn, chục nghìn, nghìn)
Hàng chục: 5 cách chọn (trừ hàng trăm nghìn, chục nghìn, nghìn, trăm)
Hàng đơn vị: 4 cách chọn (từ hàng trăm nghìn, chục nghìn, nghìn, trăm, chục)
=> Số lượng số tự nhiên có 6 chữ số khác nhau lập từ các số 0,1,2,3,4,5,6,7,8 là:
8 x 8 x 7 x 6 x 5 x 4 = 47 040 (số)
Đ.số: 47 040 số
Số chia hết cho 4 khi 2 chữ số tận cùng của nó chia hết cho 4, nên ý tưởng ở đây là chọn 2 số tận cùng trước.
Có \(\dfrac{96-04}{4}+1=24\) số có 2 chữ số chia hết cho 4 (tính cả những số bắt đầu bằng 0 như 04, 08...)
Loại ra 2 trường hợp 2 chữ số trùng nhau là \(44\) và \(88\), ta còn 22 chữ số.
Chia 22 chữ số này làm 2 loại: có chứa chữ số 0 bao gồm 6 số là 04, 08, 20, 40, 60, 80 và 16 số không chứa chữ số 0
- TH1: 2 chữ số cuối có chứa 0, chọn 3 chữ số còn lại từ 8 chữ số còn lại và hoán vị chúng có \(A_8^3\) cách \(\Rightarrow6.A_8^3\) số
- TH2: 2 chữ số cuối không chứa chữ số 0:
+ Chọn 3 chữ số còn lại 1 cách bất kì và hoán vị: \(A_8^3\) cách
+ Chọn 3 chữ số còn lại có mặt chữ số 0 và hoán vị sao cho số 0 đứng đầu: \(A_7^2\) cách
\(\Rightarrow16.\left(A_8^3-A_7^2\right)\) số
Cộng 2 trường hợp lại
TL:
Lập được 49 số
* sai thì bn thông cảm nha*
HT!~!