a | 392 | 278 | 357 | 420 | |
b | 28 | 13 | 21 | 14 | |
q | 25 | 12 | |||
r | 10 | 0 |
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng a/b > 1 => a/b > a+m/b+m (a;b;m thuộc N*)
=> \(N=\frac{100^{101}+1}{100^{100}+1}>\frac{100^{101}+1+99}{100^{100}+1+99}\)
\(>\frac{100^{101}+100}{100^{100}+100}\)
\(>\frac{100.\left(100^{100}+1\right)}{100.\left(100^{99}+1\right)}=\frac{100^{100}+1}{100^{99}+1}=M\)
=> N > M
Ủng hộ mk nha ^_-
Ta có : N = \(\frac{100^{101}+1}{100^{100}+1}\)< \(\frac{100^{101}+1+99}{100^{100}+1+99}\)= \(\frac{100^{101}+100}{100^{100}+100}\)= \(\frac{100\left(100^{100}+1\right)}{100\left(100^{99}+1\right)}\)= \(\frac{100^{100}+1}{100^{99}+1}\)= M
Vậy M > N.
NHỚ K VỚI NHÉ!!!!!!
\(\frac{a_1-1}{100}=\frac{a_2-2}{99}=\frac{a_3-3}{98}=...=\frac{a_{100}-100}{1}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a_1-1+a_2-2+a_3-3+...+a_{100}-100}{1+2+3+...+100}\)\(=\)\(\frac{a_1+a_2+a_3+...+a_{100}-\left(1+2+3+...+100\right)}{1+2+3+...+100}\)
\(=\)\(\frac{10100-5050}{5050}\)vì \(1+2+3+...+100=5050\)
\(=\) \(\frac{5050}{5050}\)\(=\)\(1\)
Ta có \(\frac{a_1-1}{100}=1\Rightarrow a_1-1=100\Rightarrow a_1=101\)
\(\frac{a_2-2}{99}=1\Rightarrow a_2-2=99\Rightarrow a_2=101\)
\(\frac{a_3-3}{98}=1\Rightarrow a_3-3=98\Rightarrow a_3=101\)
\(....\)
\(\frac{a_{100}-100}{1}=1\Rightarrow a_{100}-100=1\Rightarrow a_{100}=101\)
Vậy \(a_1=a_2=a_3=....=a_{100}=101\)
a) Áp dụng \(\frac{a}{b}< 1\Leftrightarrow\frac{a}{b}< \frac{a+m}{b+m}\) (a;b;m \(\in\) N*)
Ta có:
\(A=\frac{2008^{2008}+1}{2008^{2009}+1}< \frac{2008^{2008}+1+2007}{2009^{2009}+1+2007}\)
\(A< \frac{2008^{2008}+2008}{2008^{2009}+2008}\)
\(A< \frac{2008.\left(2008^{2007}+1\right)}{2008.\left(2008^{2008}+1\right)}=\frac{2008^{2007}+1}{2008^{2008}+1}=B\)
=> A < B
b) Áp dụng \(\frac{a}{b}>1\Leftrightarrow\frac{a}{b}>\frac{a+m}{b+m}\) (a;b;m \(\in\) N*)
Ta có:
\(N=\frac{100^{101}+1}{100^{100}+1}>\frac{100^{101}+1+99}{100^{100}+1+99}\)
\(N>\frac{100^{101}+100}{100^{100}+100}\)
\(N>\frac{100.\left(100^{100}+1\right)}{100.\left(100^{99}+1\right)}=\frac{100^{100}+1}{100^{99}+1}=M\)
=> M > N