K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 2 2017

ta có

5x^2+9y^2-12xy+8-48y+24x+72=0

<=>x^2-8x+16 + 4x^2+9y^2-12xy-48y+32x+64=0

<=> (x-4)^2+(2x-3y+8)^2=0

do(x-4)^2 ;(2x-3y+8)^2 \(\ge0\)

nên \(\left\{\begin{matrix}\left(x-4\right)^2=0\\\left(2x-3y+8\right)^2=0\end{matrix}\right.\)

<=> x=4 ;y=5,(3) (loại)

Vậy ko tồn tại cặp nghiệm nguyên

18 tháng 1 2023

\(A=5x^2+9y^2-12xy+24x-48y+81\)

\(A=4x^2+x^2+9y^2-12xy+32x-48y-8x+16+1+64\)

\(A=(4x^2+9y^2+64-12xy+32x-48y)+\left(x^2-8x+16\right)+1\)

\(A=[\left(2x\right)^2+\left(3y\right)^2+\left(8\right)^2-2.2x.3y-2.3y.8+2.2x.8]+\left(x^2-8x+16\right)+1\)

\(A=\left(2x-3y+8\right)^2\left(x-4\right)^2+1\)

\(Do\) \(\left(2x-3y+8\right)^2\ge0\) \(và\) \(\left(x-4\right)^2\ge0\)

\(\Rightarrow A_{min}=1\)

8 tháng 12 2018

\(5x^2+9y^2-12xy+24x-48y+2080=4x^2-2.2x.3y+9y^2+16\left(2x-3y\right)+64+x^2-8x+16+2000=\left(2x-3y\right)^2+2.\left(2x-3y\right).8+8^2+\left(x-4\right)^2+2000=\left(2x-3y+8\right)^2+\left(x-4\right)^2+2000\)

Ta có \(\left(2x-3y+8\right)^2\ge0\)

\(\left(x-4\right)^2\ge0\)

Nên \(\left(2x-3y+8\right)^2+\left(x-4\right)^2\ge0\Leftrightarrow\left(2x-3y+8\right)^2+\left(x-4\right)^2+2000\ge2000\)

Dấu bằng xảy ra khi \(\left\{{}\begin{matrix}2x-3y+8=0\\x-4=0\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x=4\\y=\dfrac{16}{3}\end{matrix}\right.\)

Vậy Min của \(5x^2+9y^2-12xy+24x-48y+2080\) là 2000 và xảy ra khi x=4 và y=\(\dfrac{16}{3}\)

20 tháng 10 2015

\(4x^2+9y^2+64-12xy-48y+32x+x^2-8x+16+2\)

\(=\left(2x-3y+8\right)^2+\left(x-4\right)^2+2\ge2\)

Dấu "=" xảy ra \(\Leftrightarrow\)x=4 và y=\(\frac{16}{3}\)

Vậy MINP=2 <=> x=4;y=16/3

 

 

23 tháng 12 2016

3y=z

\(S=5x^2+z^2-4xz-24x+16z+2080\)

\(S=\left(x-2z+8\right)^2+4x^2-40x+2080-8^2\)

\(S=\left(x-2z+8\right)^2+4\left(x-5\right)^2+2080-8^2-4.5^2\)

Smin =\(2080-8^2-4.5^2\)

24 tháng 12 2016

đề thi học kỳ của mình cũng có câu này

7 tháng 11 2017

\(s=\left(2x-3y+8\right)^2+\left(x-4\right)^2+2014-16-64\)

\(S_{min}=2014-16-164\)

9 tháng 10 2018

tiếp đi =))

9 tháng 10 2018

P = 5x2+9y2-12xy+24x-48y+82=(2x - 3y + 8)² + x² - 8x + 16 + 2 = (2x - 3y + 8)² + (x - 4)² + 2

=> min P = 2
dấu = xảy ra <=> 2x - 3y + 8 = 0 và x = 4 => y = \(\dfrac{16}{3}\)

vậy min P = 2
dấu = xảy ra <=> x = 4, y = \(\dfrac{16}{3}\)

1 tháng 12 2017

\(S=4x^2-12xy+9y^2+32x-48y+64+x^2-8x+16+2000\)

\(S=\left(2x-3y\right)^2+16\left(2x-3y\right)+64+\left(x^2+8x+16\right)+2000\)

\(S=\left(2x-3y+8\right)^{^2}+\left(x-4\right)^2+2000\ge2000\)

MinS = 2000 khi x = 4 và y = 16/3

1 tháng 12 2017

con số không đúng với đề bài bạn nha