K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 3 2017

Đề \(A=2017+\sqrt{2016-x}\)

Giải

a) A có nghĩa khi \(\sqrt{2016-x}\ge0\Leftrightarrow2016-x\ge0\Leftrightarrow x\le2016\)

b)Ta thấy: \(\sqrt{2016-x}\ge0\forall x\)

\(\Rightarrow2017+\sqrt{2016-x}\ge2017\forall x\)

\(\Rightarrow A\ge2017\forall x\)

Đẳng thức xảy ra khi \(\sqrt{2016-x}=0\Leftrightarrow2016-x=0\Leftrightarrow x=2016\)

Vậy với \(x=2016\) thì \(A_{Min}=2017\)

1 tháng 10 2015

|x-67| >=0 => 20167-|x-67| >= 2017

GTNN của A là 2017

<=> x-67=0

<=> x=67

19 tháng 5 2020

À mình ghi nhầm!! •_•"' Sửa lại như vầy nha

c) C=(26-x)/(x-20) đạt GTNN

30 tháng 5 2016

\(A=\left(x-1\right)^2+2016\)

Vì \(\left(x-1\right)^2\ge0\)

\(=>GTNN\left[\left(x-1\right)^2\right]=0\)

Vậy \(A_{min}=0+2016=2016\)

Để A đạt giá trị nhỏ nhất thì \(\left(x-1\right)^2=0\)

\(\Rightarrow x-1=0\Rightarrow x=1\)

\(B=Ix+10I+2016\)

Vì \(Ix+10I\ge0\)

Nên \(GTNN\left(Ix+10I\right)=0\)

Vậy \(B_{min}=0+2016=2016\)

Để B đạt giá trị nhỏ nhất thì \(Ix+10I=0\) 

\(x+10=0\Rightarrow x=-10\)

\(C=\frac{5}{x-2}\)

Khi \(x-2\) càng lớn thì \(C=\frac{5}{x-2}\)càng nhỏ

Mà để C là số nguyên thì \(\left(x-2\right)\in\left\{-5;5\right\}\)

Mà \(\left(-5\right)< 5\)

=> \(GTNN\left(x-2\right)=-5\)

\(\Rightarrow x=\left(-5\right)+2=-3\)

2 tháng 5 2017

a, Ta có: (x - 1)2 \(\ge\)0 với mọi x

=> A = (x - 1)2 + 2016 \(\ge\)2016

Dấu "=" xảy ra <=> (x - 1)2 = 0 <=> x = 1

Vậy GTNN của A = 2016 tại x = 1

b, Ta có: \(\left|x+4\right|\ge0\)với mọi x

=> A = |x + 4| + 2017 \(\ge\)2017

Dấu "=" xảy ra <=> x + 4 = 0 <=> x = -4

Vậy GTNN của B = 2017 tại x = -4

18 tháng 8 2017

a) có nghĩa khi \(x-1\ne0\Rightarrow x\ne1\)

b)\(f\left(7\right)=\frac{7+2}{7-1}=\frac{9}{6}\)

c)\(f\left(x\right)=\frac{x+2}{x-1}=\frac{1}{4}\Leftrightarrow x+2=4x-4\)

\(\Leftrightarrow-3x=-6\Leftrightarrow x=2\)

e)\(f\left(x\right)>1\Rightarrow\frac{x+2}{x-1}-1>0\)

\(\Rightarrow\frac{3}{x-1}>0\) thấy 3>0 nên x-1>0 =>x>1

18 tháng 8 2017

Bài 2:

a)\(P=9-2\left|x-3\right|\)

Thấy: \(\left|x-3\right|\ge0\)\(\Rightarrow2\left|x-3\right|\ge0\)

\(\Rightarrow-2\left|x-3\right|\le0\)

\(\Rightarrow9-2\left|x-3\right|\le9\)

Khi x=3

b)Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:

\(Q=\left|x-2\right|+\left|x-8\right|\)

\(=\left|x-2\right|+\left|8-x\right|\)

\(\ge\left|x-2+8-x\right|=6\)

Khi \(2\le x\le8\)

2 tháng 11 2019

\(f\left(x\right)=\left|x-2015\right|+\left|x+2016\right|\)

a) Ta có: \(\left|x\right|=\orbr{\begin{cases}x=\frac{1}{2}\\x=-\frac{1}{2}\end{cases}}\)

+) Với \(x=\frac{1}{2}\)

\(f\left(\frac{1}{2}\right)=\left|\frac{1}{2}-2015\right|+\left|\frac{1}{2}+2016\right|=2\)

+) Với \(x=-\frac{1}{2}\)

\(f\left(-\frac{1}{2}\right)=\left|-\frac{1}{2}-2015\right|+\left|-\frac{1}{2}+2016\right|=0\)

2 tháng 11 2019

c) Áp dụng BĐT |x| + |y| \(\ge\)|x + y|, ta được:

\(f\left(x\right)=\left|x-2015\right|+\left|x+2016\right|=\left|2015-x\right|+\left|x+2016\right|\)

\(\ge\left|\left(2015-x\right)+\left(x+2016\right)\right|=\left|4031\right|=4031\)

(Dấu "="\(\Leftrightarrow\left(2015-x\right)\left(x+2016\right)\ge0\)

TH1: \(\hept{\begin{cases}2015-x\ge0\\x+2016\ge0\end{cases}}\Leftrightarrow-2016\le x\le2015\)

TH2: \(\hept{\begin{cases}2015-x\le0\\x+2016\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge2015\\x\le-2016\end{cases}}\left(L\right)\))

Vậy \(f\left(x\right)_{min}=4031\Leftrightarrow-2016\le x\le2015\)