K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 7 2017

a) n = 3.

b) n = 1.              

c) n = 6.     

d) n = 5.

e) n = 8.               

f) n = 3.

AH
Akai Haruma
Giáo viên
26 tháng 12 2022

Lời giải:
a.

$3n-1\vdots n-2$

$\Rightarrow 3(n-2)+5\vdots n-2$

$\Rightarrow 5\vdots n-2$
$\Rightarrow n-2\in\left\{1; -1;5;-5\right\}$

$\Rightarrow n\in\left\{3; 1; 7; -3\right\}$
b.

$3n+1\vdots 2n-1$

$\Rightarrow 2(3n+1)\vdots 2n-1$

$\Rightarrow 6n+2\vdots 2n-1$

$\Rightarrow 3(2n-1)+5\vdots 2n-1$
$\Rightarrow 5\vdots 2n-1$

$\Rightarrow 2n-1\in\left\{1; -1; 5; -5\right\}$

$\Rightarrow n\in\left\{1; 0; 3; -2\right\}$

26 tháng 12 2022

a) (3n -1) chia hết (n-2)

⇒3(n-2)+5 chia hết (n-2)

⇒ 5 chia hết (n-2) vì 3(n-2) chia hết (n-2)

⇒(n-2) ϵ Ư(5)

Vậy n-2 =1 hoặc n-2 = -1 hoặc n-2 =5 hoặc n-2 = -5

Vậy n = 3 hoặc n=1 hoặc n=7 hoặc n= -3

b) (3n+1) chia hết (2n-1)

⇒(2n -1 +n +2) chia hết (2n-1)

⇒ (n+2) chia hết (2n-1)

⇒(2n +4) chia hết (2n-1)

⇒(2n -1 +5) chia hết (2n-1)

⇒ 5 chia hết (2n-1)

⇒(2n-1) ϵ Ư (5)

Vậy n = {-1; 0; 3; -2}

 

 

5 tháng 7 2023

\(A=3+3^2+3^3+...+3^{2015}\)

\(\Rightarrow3A=3^2+3^3+...+3^{2015}+3^{2016}\)

\(\Rightarrow3A-A=\left(3^2+3^3+...+3^{2016}\right)-\left(3+3^2+3^3+...+3^{2015}\right)\)

\(\Rightarrow2A=\left(3^2-3^2\right)+\left(3^3-3^3\right)+...+\left(3^{2016}-3\right)\)

\(\Rightarrow2A=3^{2016}-3\)

\(\Rightarrow A=\dfrac{3^{2016}-3}{2}\)

Ta có: \(2A+3=3^n\)

\(\Rightarrow2\cdot\dfrac{3^{2016}-3}{2}+3=3^n\)

\(\Rightarrow3^{2016}-3+3=3^n\)

\(\Rightarrow3^{2016}=3^n\)

\(\Rightarrow n=2016\)

9 tháng 8 2023

1. (Mình đưa nó về thừa số nguyên tố nha, cái nào ko đc thì thôi)

125 = 53; 27 = 33; 64 = 26; 1296 = 64; 1024 = 210; 2401 = 74; 43 = 64; 8 = 23; 25.125 = 3125 = 55.

2.

2n = 16 =) n = 4.           3n = 81 =) n = 4.      2n-1 = 64 =) n = 7.        3n+2 = 27.81 =) n = 5.       25.5n-1 = 625 =) n = 3.

2n.8 = 128 =) n = 4.     3.5n = 375 =) n = 3.   (3n)2 = 729 =) n = 3.        81 ≤ 3n ≤ 729 =) n = 4; 5; 6.

 

9 tháng 8 2023

\(125=5^3;27=3^3;1296=36^2=6^4=2^4.3^4;1024=32^2=2^{10};2401=49^2=7^4;4^3=2^6;8=2^3;25.125=5^2.5^3=5^5\)

19 tháng 2 2016

11,

a, 4x-3\(\vdots\) x-2 1

    x-2\(\vdots\) x-2\(\Rightarrow\) 4(x-2)\(\vdots\) x-2\(\Rightarrow\) 4x-8\(\vdots\) x-2 2

Từ 12 ta có:

(4x-3)-(4x-8)\(\vdots\) x-2

\(\Rightarrow\) 4x-3-4x+8\(\vdots\) x-2

\(\Rightarrow\)       5       \(\vdots\) x-2

\(\Rightarrow\) x-2\(\in\) Ư(5)

\(\Rightarrow\) x-2\(\in\){-5;-1;1;5}

\(\Rightarrow\) x\(\in\) {-3;1;3;7}

Vậy......

Phần b và c làm tương tự như phần a pn nhé! haha

21 tháng 9 2023

       B  =  31 + 32 + 33 +...+ 3100

    3B   =         32 + 33 + ...+ 3100 + 3101

3B - B =      3101 - 3

2B     = 3101 - 3

2B + 3 = 3n

⇒ 3101   - 3 + 3= 3n

   3n = 3101

n = 101

Kết luận n = 101 

11 tháng 12 2016

cậu t đi

11 tháng 12 2016

\(5^{2016}\) ?

9 tháng 1 2018

3n+2 chia hết cho n-1

ta có: 3n+2=3n-3+5=3(n-1)+5

Vì n-1 chia hết cho n-1

suy ra 5 chia hết cho n-1

suy ra n-1 thuộc bội của 5 =1,-1,5,-5

Rồi bạn tự giải ra từng trường hợp nhé !

a/ \(n+2⋮n+1\)

\(\left(n+1\right)+1⋮n+1\)

Vì \(n+1⋮n+1\)

\(\Rightarrow1⋮n+1\)

\(\Rightarrow n+1\inƯ\left(1\right)=\left\{\pm1\right\}\)

\(\Rightarrow\orbr{\begin{cases}n+1=1\\n+1=-1\end{cases}\Rightarrow\orbr{\begin{cases}n=0\\n=-2\end{cases}}}\)

b/ \(3n+2⋮n-1\)

\(3n-3+5⋮n-1\)

\(3\left(n-1\right)+5⋮n-1\)

Vì \(3\left(n-1\right)⋮n-1\)

\(\Rightarrow5⋮n-1\)

\(\Rightarrow n-1\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

\(\orbr{\begin{cases}n-1=1\\n-1=-1\end{cases}\Rightarrow\orbr{\begin{cases}n=2\\n=0\end{cases}}}\)

\(\orbr{\begin{cases}n-1=5\\n-1=-5\end{cases}\Rightarrow\orbr{\begin{cases}n=6\\n=-4\end{cases}}}\)

Vậy \(n\in\left\{2;0;6;-4\right\}\)

c/ 2n - 1 là ước của 3n + 2

\(\Rightarrow3n+2⋮2n-1\)

\(\Rightarrow6n+4⋮2n-1\)

\(\Rightarrow6n-3+7⋮2n-1\)

\(\Rightarrow3\left(2n-1\right)+7⋮2n-1\)

Vì \(3\left(2n-1\right)⋮2n-1\)

\(\Rightarrow7⋮2n-1\)

\(\Rightarrow2n-1\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)

\(\orbr{\begin{cases}2n-1=1\\2n-1=-1\end{cases}\Rightarrow\orbr{\begin{cases}2n=2\\2n=0\end{cases}\Rightarrow}\orbr{\begin{cases}n=1\\n=0\end{cases}}}\)

\(\orbr{\begin{cases}2n-1=7\\2n-1=-7\end{cases}\Rightarrow\orbr{\begin{cases}2n=8\\2n=-6\end{cases}\Rightarrow}\orbr{\begin{cases}n=4\\n=-3\end{cases}}}\)

Vậy \(n\in\left\{1;0;4;-3\right\}\)

hok tốt!!