Chứng minh rằng :
a) \(11^{10}-1\) chia hết cho 100
b) \(101^{100}-1\) chia hết cho 10 000
c) \(\sqrt{10}\left[\left(1+\sqrt{10}\right)^{100}-\left(1-\sqrt{10}\right)^{100}\right]\) là một số nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. A = 75(42004 + 42003 +...+ 42 + 4 + 1) + 25
A = 25 . [3 . (42004 + 42003 +...+ 42 + 4 + 1) + 1]
A = 25 . (3 . 42004 + 3 . 42003 +...+ 3 . 42 + 3 . 4 + 3 + 1)
A = 25 . (3 . 42004 + 3 . 42003 +...+ 3 . 42 + 3 . 4 + 4)
A = 25 . 4 . (3 . 42003 + 3 . 42002 +...+ 3 . 4 + 3 + 1)
A =100 . (3 . 42003 + 3 . 42002 +...+ 3 . 4 + 3 + 1) \(⋮\) 100
Anh vào đây nhé, link này có bài của anh này, chúc anh học tốt !
Câu hỏi của Tùng Lâm Phạm - Toán lớp 9 | Học trực tuyến
1)
\(\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{100}}>\dfrac{1}{\sqrt{100}}+\dfrac{1}{\sqrt{100}}+\dfrac{1}{\sqrt{100}}+...+\dfrac{1}{\sqrt{100}}=\dfrac{100}{\sqrt{100}}=10\left(đpcm\right)\)
2)
\(C=-18-\left|2x-6\right|-\left|3y+9\right|\le-18\)
Dấu "=" xảy ra khi: \(\left\{{}\begin{matrix}x=3\\y=-3\end{matrix}\right.\)
a, \(-\frac{187}{70}\)
b,\(\frac{27}{70}\)
c,\(\frac{53}{14}\)
d,\(\frac{27}{4}\)
e,1
f,\(\frac{23}{4}\)
g,-1
i,6
k,315
l,\(\frac{9}{2}\)
n=ghi lộn nhé !!
a)\(10.\sqrt{0,01.\sqrt{ }\frac{16}{9}}+3\sqrt{49-\frac{1}{6}}\sqrt{4}\)
a) 1110 – 1 = (1 + 10)10 – 1 = (1 + C110 10 + C210102 + … +C910 109 + 1010) – 1
= 102 + C210102 +…+ C910 109 + 1010.
Tổng sau cùng chia hết cho 100 suy ra 1110 – 1 chia hết cho 100.
b) Ta có
101100 – 1 = (1 + 100)100 - 1
= (1 + C1100 100 + C2100 1002 + …+C99100 10099 + 100100) – 1.
= 1002 + C21001002 + …+ 10099 + 100100.
Tổng sau cùng chia hết cho 10 000 suy ra 101100 – 1 chia hết cho 10 000.
c) (1 + √10)100 = 1 + C1100 √10 + C2100 (√10)2 +…+ (√10)99 + (√10)100
(1 - √10)100 = 1 - C1100 √10 + C2100 (√10)2 -…- (√10)99 + (√10)100
√10[(1 + √10)100 – (1 - √10)100] = 2√10[C1100 √10 + C3100 (√10)3 +…+ . (√10)99]
= 2(C1100 10 + C3100 102 +…+ 1050)
Tổng sau cùng là một số nguyên, suy ra √10[(1 + √10)100 – (1 - √10)100] là một số nguyên.
a) \(11^{10}-1=\left(10+1\right)^{10}-1\)\(=C^0_{10}10^{10}+C^1_{10}10^9+...+C^9_{10}10+C^{10}_{10}-1\)
\(=10^{10}+C^1_{10}10^9+...+C^8_{10}10^2+10.10\) chia hết cho 100.
b) \(\left(101\right)^{100}-1=\left(100+1\right)^{100}-1\)
\(=100^{100}+C_{100}^{99}100^{99}+....+C^1_{100}100+C_{100}^{100}100^0-1\)
\(=100^{100}+C_{100}^{99}100^{99}+....+C^2_{100}100^2+100.100+1-1\)
\(=100^{100}+C_{100}^{99}100^{99}+....+C^2_{100}100^2+10000\) chia hết cho 10000.