K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 5 2017

a) = 4x2y3

b) = 4/2x2y

c) = xyz2

11 tháng 3 2021

a) 3x2y3+x2y3=4x2y3

b)5x2y-1/2x2y=10/2x2y-1/2x2y=9/2x2y

c) \(\frac{3}{4}xyz^2+\frac{1}{2}xyz^2-\frac{1}{4}xyz^2\)

\(=\frac{3}{4}xyz^2+\frac{2}{4}xyz^2-\frac{1}{4}xyz^2\)

\(=\frac{5}{4}xyz^2-\frac{1}{4}xyz^2\)

\(=\frac{4}{4}xyz^2=xyz^2\)

11 tháng 3 2021

\(a,3x^2y^3+x^2y^3=4x^2y^3\)

\(b,5x^2y-\frac{1}{2}x^2y=\frac{9}{2}x^2y\)

\(c,\frac{3}{4}xyz^2+\frac{1}{2}xyz^2-\frac{1}{4}xyz^2=\left(\frac{3}{4}xyz^2-\frac{1}{4}xyz^2\right)+\frac{1}{2}xyz^2=\frac{2}{4}xyz^2+\frac{1}{2}xyz^2=xyz^2\)

`A = x - 2y + xy - 3x + y^2`

Bậc: `2`.

`B = (1-1/2)xyz - x^2y + (1+1/2)xz`

`= 1/2xyz - x^2y + 3/2xz`

Bậc: `3`

a: =-4xyz^2

b: =-9x^2y

c: =16x^2y^2

d: =1/6x^2y^3

e: =13/6x^3y^2

f: =7/12x^4y

30 tháng 5 2023

a) -xyz² - 3xz.yz

= -xyz² - 3xyz²

= -4xyz²

b) -8x²y - x.(xy)

= -8x²y - x²y

= -9x²y

c) 4xy².x - (-12x²y²)

= 4x²y² + 12x²y²

= 16x²y²

d) 1/2 x²y³ - 1/3 x²y.y²

= 1/2 x²y³ - 1/3 x²y³

= 1/6 x²y³

e) 3xy(x²y) - 5/6 x³y²

= 3x³y² - 5/6 x³y²

= 13/6 x³y²

f) 3/4 x⁴y - 1/6 xy.x³

= 3/4 x⁴y - 1/6 x⁴y

= 7/12 x⁴y

18 tháng 4 2017

Tính tổng của các đơn thức: \(\dfrac{3}{4}\) xyz2; \(\dfrac{1}{2}\)xyz2; -\(\dfrac{1}{4}\)xyz2

\(\dfrac{3}{4}\) xyz2 + \(\dfrac{1}{2}\)xyz2 + (-\(\dfrac{1}{4}\)xyz2) = ( \(\dfrac{3}{4}+\dfrac{1}{2}-\dfrac{1}{4}\)) xyz2 = xyz2.


18 tháng 4 2017

Hướng dẫn giải:

Tính tổng của các đơn thức: 3434 xyz2; 1212xyz2; -1414xyz2

3434 xyz2 + 1212xyz2 + (-1414xyz2) = ( 3434 + 1212 - 1414) xyz2 = xyz2.

24 tháng 9 2021

a) \(2x=5y\)\(x=\dfrac{5}{2}y\)\(xy=\dfrac{5}{2}y^2\)

Thay \(xy=250\), ta có:

\(250=\dfrac{5}{2}y^2\)

\(y^2=100\)\(y=+-10\)

+) \(y=10\text{⇒}x=250:10=25\)

+) \(y=-10\text{⇒}x=250:-10=-25\)

24 tháng 9 2021

\(a,2x=5y\Rightarrow\dfrac{x}{5}=\dfrac{y}{2}=k\\ \Rightarrow x=5k;y=2k\\ xy=250\Rightarrow5k\cdot2k=250\Rightarrow k^2=25\Rightarrow\left[{}\begin{matrix}k=5\\k=-5\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=25;y=10\\x=-25;y=-10\end{matrix}\right.\\ b,\dfrac{x}{3}=\dfrac{y}{2}=\dfrac{z}{4}=a\Rightarrow x=3a;y=2a;z=4a\\ xyz=192\Rightarrow24a^3=192\Rightarrow a^3=8\Rightarrow a=2\\ \Rightarrow\left\{{}\begin{matrix}x=6\\y=4\\z=8\end{matrix}\right.\\ c,\Rightarrow\dfrac{x}{5}=\dfrac{y}{2}=\dfrac{z}{-3}=q\Rightarrow x=5q;y=2q;z=-3q\\ xyz=240\Rightarrow-30q^3=240\Rightarrow q^3=-8\Rightarrow q=-2\\ \Rightarrow\left\{{}\begin{matrix}x=-10\\y=-4\\z=6\end{matrix}\right.\)

18 tháng 4 2021

Ta có:\(\dfrac{x^2}{4}=\dfrac{x}{2};\dfrac{y^2}{9}=\dfrac{y}{3};\dfrac{z^2}{25}=\dfrac{z}{5}\)

Aps dụng tính chất dãy tỉ số bằn nhau:

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x-y+z}{2-3+5}=\dfrac{4}{4}=1\)

=>\(\dfrac{x}{2}=1=>x=2\)

  \(\dfrac{y}{3}=1=>y=3\)

\(\dfrac{z}{5}=1=>z=5\)

Vậy x=2, y=3, z=5

18 tháng 4 2021

Ta có : \(\dfrac{x^2}{4}=\dfrac{y^2}{9}=\dfrac{z^2}{25}\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được : 

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x-y+z}{2-3+5}=\dfrac{4}{4}=1\)

\(\Leftrightarrow x=2;y=3;z=5\)

12 tháng 4 2018

a)-\(\dfrac{1}{3}xy^2z.4x^2y=-\dfrac{4}{3}x^3y^3z\)

đa thức có bậc 7

b)\(25x^2y^2.\dfrac{1}{25}x^2.y^3.z^2\)=\(x^4.y^5.z^2\)

có bậc là 11

\(\dfrac{4}{x+1}=\dfrac{2}{y-2}=\dfrac{3}{z+2}\)

=>\(\dfrac{x+1}{4}=\dfrac{y-2}{2}=\dfrac{z+2}{3}=k\)

=>x+1=4k; y-2=2k; z+2=3k

=>x=4k-1; y=2k+2; z=3k-2

xyz=12

=>(4k-1)(2k+2)(3k-2)=12

=>(4k-1)(k+1)(3k-2)=6

=>(4k-1)(3k^2-2k+3k-2)=6

=>(3k^2+k-2)(4k-1)=6

=>12k^3-3k^2+4k^2-k-8k+2-6=0

=>12k^3+k^2-9k-7=0

=>

\(\dfrac{4}{x+1}=\dfrac{2}{y-2}=\dfrac{3}{z+2}\)

=>\(\dfrac{x+1}{4}=\dfrac{y-2}{2}=\dfrac{z+2}{3}=k\)

=>x+1=4k; y-2=2k; z+2=3k

=>x=4k-1; y=2k+2; z=3k-2

xyz=12

=>(4k-1)(2k+2)(3k-2)=12

=>(4k-1)(k+1)(3k-2)=6

=>(4k-1)(3k^2-2k+3k-2)=6

=>(3k^2+k-2)(4k-1)=6

=>12k^3-3k^2+4k^2-k-8k+2-6=0

=>12k^3+k^2-9k-4=0

=>k=1

=>x=4k-1=3; y=2k+2=4; z=3k-2=3-2=1