Chứng minh các biểu thức sau ko phụ thuộc vào biến:
B=(x-1)^3-(x+1)^3+6(x+1)(x-1)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có (x - 1)3 - (x + 1)3 + 6(x + 1)(x - 1)
= x3 - 3x2 + 3x - 1 - (x3 + 3x2 + 3x + 1) + 6(x2 - 1)
= x3 - 3x2 + 3x - 1 - x3 - 3x2 - 3x - 1 + 6x2 - 6
= -6x2 - 2 + 6x2 - 6
= -8
=> Biểu thức trên không phụ thuộc vào biến (đpcm)
A = ( x-2 )2 - (x-3)*(x-1)
A= x2 -4x -4 - x2 +x +3x -3
A= 1
Vậy A ko phụ thuộc vào biến x
a) \(A=\left(3x-2\right)\left(3x+2\right)-\left(3x+1\right)^2-3.\left(-2x-1\right)\)
\(=\left(3x\right)^2-4-\left(9x^2+6x+1\right)+6x+3\)
\(=9x^2-4-9x^2-6x-1+6x+3\)
\(=-2\) không phụ thuộc vào x
b) \(B=\left(x+1\right)\left(x-1\right)-\left(x-2\right)^2-4.\left(x+3\right)\)
\(=x^2-1-\left(x^2-4x+4\right)-\left(4x+12\right)\)
\(=x^2-1-x^2+4x-4-4x-12\)
\(=-17\)không phụ thuộc vào x.
\(B=\left(x-1\right)^3-\left(x+1\right)^3+6\left(x+1\right)\left(x-1\right)\)
\(=x^3-3x^2+3x-1-\left(x^3+3x^2+3x+1\right)+6\left(x^2+1\right)\)
\(=x^3-3x^2+3x-1-x^3-3x^2-3x-1+6x^2-6\)
\(=-6x^2-2+6x^2-6\)
\(=-8\)
Vậy biểu thức không phụ thuộc vào biến
\(B=\left(x-1\right)^3-\left(x+1\right)^3+6\left(x+1\right)\left(x-1\right)\)
\(=x^3-3x^2+3x-1-x^3-3x^2-3x-1+6\left(x^2-1\right)\)
\(=-6x^2-2+6x^2-6=-8\)
Vậy biểu thức ko phụ thuộc vào giá trị biến x