Tìm số thức x, y thoả mãn:
\(x^2+2y^2-2xy-2y-2x+5=0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2+xy-2y^2=0< =>\left(x-y\right)\left(x+2y\right)=0< =>\)x=y (vì x+2y>0 với x;y>0)
A= (2013x2+2x2)(2014x2+2x2) = 2015.2016.x4
Giải:
Ta có:
\(3xy-5=x^2+2y\)
\(\Rightarrow3xy-2y=x^2+5\)
\(\Rightarrow y\left(3x-2\right)=x^2+5\left(1\right)\)
Do \(x,y\) nguyên nên \(x^2+5⋮3x-2\)
\(\Rightarrow9\left(x^2+5\right)⋮3x-2\Rightarrow9x^2+45⋮3x-2\)
\(\Rightarrow9x^2-6x+6x-4+49⋮3x-2\)
\(\Rightarrow3x\left(3x-2\right)+2\left(3x-2\right)+49⋮3x-2\)
\(\Rightarrow49⋮3x-2\Rightarrow3x-2\in\left\{\pm1;\pm7;\pm49\right\}\)
\(\Rightarrow3x\in\left\{-47;-5;1;3;9;51\right\}\Rightarrow x\in\left\{1;3;17\right\}\)
Thay lần lượt và \(\left(1\right)\) ta được \(y\in\left\{6;2;6\right\}\)
Vậy các cặp số \(\left(x,y\right)=\left(1;6\right),\left(3;2\right),\left(17;6\right)\)
x2+2y2-2xy-2y-2x+5=0
<=>(x2-2xy+y2-2x+2y+1)+(y2-4y+4)=0
<=>(x-y-1)2+(y-2)2=0
Do (x-y-1)2\(\ge\)0
(y-2)2\(\ge\)0
=>Phương trình tương đương \(\left\{{}\begin{matrix}x-y-1=0\\y-2=0\end{matrix}\right.\)
<=>\(\left\{{}\begin{matrix}y=2\\x=3\end{matrix}\right.\)
\(x^2+2y^2-2xy-2y-2x+5=0\)
\(\Leftrightarrow\left(x^2-2xy-2x+y^2+2y+1\right)+\left(y^2-4y+4\right)=0\)
\(\Leftrightarrow\left(x-y-1\right)^2+\left(y-2\right)^2=0\)
Dễ thấy: \(\left\{{}\begin{matrix}\left(x-y-1\right)^2\ge0\ge x,y\\\left(y-2\right)^2\ge0\forall y\end{matrix}\right.\)
\(\Rightarrow\left(x-y-1\right)^2+\left(y-2\right)^2\ge0\forall x,y\)
Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}\left(x-y-1\right)^2=0\\\left(y-2\right)^2=0\forall\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=3\\y=2\end{matrix}\right.\)