K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 6 2017

a) Vì 2 vế ko âm nên bình phương cả 2 vế ta dc :

\(\left|x+y\right|^2\le\left|x\right|^2+\left|y\right|^2\)

\(\Rightarrow\left(x+y\right).\left(x+y\right)\le\left(\left|x\right|+\left|y\right|\right)\left(\left|x\right|+\left|y\right|\right)\)

\(\Rightarrow x^2+2xy+y^2\le x^2+2\left|x\right|\left|y\right|+y^2\)

\(\Rightarrow xy\le\left|xy\right|\) (Luôn đúng với mọi \(x,y\))

Vậy bất đẳng thức trên đúng. Dấu "=" xảy ra khi \(\left|xy\right|=xy\) \(\Leftrightarrow x,y\) cùng dấu

Vậy \(\left|x+y\right|\le\left|x\right|+\left|y\right|\rightarrowđpcm\)

b) Áp dụng câu a ta có :

\(\left|x-y\right|+\left|y\right|\ge\left|x-y+y\right|=\left|x\right|\Rightarrow\left|x-y\right|\ge\left|x\right|-\left|y\right|\)

Vậy \(\left|x-y\right|\ge\left|x\right|-\left|y\right|\rightarrowđpcm\)

21 tháng 6 2017

Câu hỏi của Nguyệt Nga Hồ - Toán lớp 7 | Học trực tuyến

24 tháng 3 2018

\(M=\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)+16\)

\(M=\left(x^2+10+16\right)\left(x^2+10x+24\right)+16\)

\(M=\left(x^2+16+10x\right)\left(x^6+10x+16+8\right)+16\)

\(M=\left(x^2+10x+16\right)^2+8\left(x^2+10x+16\right)+16\)

\(M=\left(x^2+10x+20\right)^2\left(đpcm\right)\)

3 tháng 11 2022

giống t

 

 

 

 

9 tháng 8 2019

Đáp án A

5 tháng 2 2017

a là một số bất kỳ à:

5 tháng 2 2017

í lộn , a thay vào là 4 cho mình với

27 tháng 8 2020

Theo giả thiết ta có \(\frac{1}{x}+\frac{1}{y}=\frac{1}{z}\Leftrightarrow\frac{x+y}{xy}=\frac{1}{z}\Leftrightarrow xz+yz=xy\)

\(\Leftrightarrow xy-xz-yz=0\Leftrightarrow x^2+y^2+z^2+xy-xz-yz=x^2+y^2+z^2\)

\(\Leftrightarrow\left(x+y-z\right)^2=x^2+y^2+z^2\)

\(\Leftrightarrow\sqrt{x^2+y^2+z^2}=\left|x+y-z\right|\)

Mà x, y, z là các số hữu tỉ nên \(\left|x+y-z\right|\)là số hữu tỉ

Vậy \(\sqrt{x^2+y^2+z^2}\)là số hữu tỉ (đpcm)

12 tháng 9 2017

Đặt \(\hept{\begin{cases}x-y=a\\y-z=b\\z-x=c\end{cases}}\)

Vì \(\left(x-y\right)+\left(y-z\right)+\left(z-x\right)=0\) nên \(a+b+c=0\Rightarrow a+b=-c\)

Ta có : \(P=\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{\left(a+b\right)^2}}\)

\(=\sqrt{\frac{\left(a+b\right)^2b^2+a^2\left(a+b\right)^2+a^2b^2}{a^2b^2\left(a+b\right)^2}}=\sqrt{\frac{a^4+b^4+a^2b^2+2ab^3+2ab^3+2a^2b^2}{a^2b^2\left(a+b\right)^2}}\)

\(=\sqrt{\frac{\left(a^2+b^2+ab\right)^2}{a^2b^2\left(a+b\right)^2}}=\frac{a^2+b^2+ab}{ab\left(a+b\right)}\) là một số hữu tỉ (đpcm)

Hình như đề thiếu bạn ak