K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
15 tháng 11 2018

Đây là câu a/

https://hoc24.vn/hoi-dap/question/693692.html?pos=1903228

Còn câu b thì như sau:

Trước hết, nghi ngờ bạn ghi sai đề ở con này \(\dfrac{1}{a^2+7a+9}\) , số 9 phải là số 12 mới hợp lý. Mình tự sửa lại đề, còn nếu đề đúng như bạn chép thì bạn giữ nguyên nó, phần còn lại rút gọn được còn đâu thì quy đồng giải trâu thôi, chẳng cách nào với đề xấu kiểu ấy cả.

\(B=\dfrac{1}{a\left(a+1\right)}+\dfrac{1}{\left(a+1\right)\left(a+2\right)}+\dfrac{1}{\left(a+2\right)\left(a+3\right)}+\dfrac{1}{\left(a+3\right)\left(a+4\right)}+\dfrac{1}{\left(a+4\right)\left(a+5\right)}\)

\(B=\dfrac{1}{a}-\dfrac{1}{a+1}+\dfrac{1}{a+1}-\dfrac{1}{a+2}+\dfrac{1}{a+2}-\dfrac{1}{a+3}+\dfrac{1}{a+3}-\dfrac{1}{a+4}+\dfrac{1}{a+4}-\dfrac{1}{a+5}\)

\(B=\dfrac{1}{a}-\dfrac{1}{a+5}=\dfrac{5}{a\left(a+5\right)}\)

15 tháng 11 2018

đúng là mk ghi sai đề thật

13 tháng 6 2021

Có \(ab+bc+ac=abc\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=1\)

Áp dụng các bđt sau:Với x;y;z>0 có: \(\dfrac{1}{x+y+z}\le\dfrac{1}{9}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\) và \(\dfrac{1}{x+y}\le\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\) 

Có \(\dfrac{1}{a+3b+2c}=\dfrac{1}{\left(a+b\right)+\left(b+c\right)+\left(b+c\right)}\le\dfrac{1}{9}\left(\dfrac{1}{a+b}+\dfrac{2}{b+c}\right)\)\(\le\dfrac{1}{9}.\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{2}{b}+\dfrac{2}{c}\right)=\dfrac{1}{36}\left(\dfrac{1}{a}+\dfrac{3}{b}+\dfrac{2}{c}\right)\)

CMTT: \(\dfrac{1}{b+3c+2a}\le\dfrac{1}{36}\left(\dfrac{1}{b}+\dfrac{3}{c}+\dfrac{2}{a}\right)\)

\(\dfrac{1}{c+3a+2b}\le\dfrac{1}{36}\left(\dfrac{1}{c}+\dfrac{3}{a}+\dfrac{2}{b}\right)\)

Cộng vế với vế => \(VT\le\dfrac{1}{36}\left(\dfrac{6}{a}+\dfrac{6}{b}+\dfrac{6}{c}\right)=\dfrac{1}{36}.6\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=\dfrac{1}{6}\)

Dấu = xảy ra khi a=b=c=3

13 tháng 6 2021

Có \(a+b=2\Leftrightarrow2\ge2\sqrt{ab}\Leftrightarrow ab\le1\)

\(E=\left(3a^2+2b\right)\left(3b^2+2a\right)+5a^2b+5ab^2+2ab\)

\(=9a^2b^2+6\left(a^3+b^3\right)+4ab+5ab\left(a+b\right)+20ab\)

\(=9a^2b^2+6\left(a+b\right)^3-18ab\left(a+b\right)+4ab+5ab\left(a+b\right)+20ab\)

\(=9a^2b^2+48-18ab.2+4ab+5.2.ab+20ab\)

\(=9a^2b^2-2ab+48\)

Đặt \(f\left(ab\right)=9a^2b^2-2ab+48;ab\le1\), đỉnh \(I\left(\dfrac{1}{9};\dfrac{431}{9}\right)\)

Hàm đồng biến trên khoảng \(\left[\dfrac{1}{9};1\right]\backslash\left\{\dfrac{1}{9}\right\}\)

 \(\Rightarrow f\left(ab\right)_{max}=55\Leftrightarrow ab=1\)

\(\Rightarrow E_{max}=55\Leftrightarrow a=b=1\)

Vậy...

10 tháng 11 2023

Ta có:

\(\dfrac{1}{2^2}=\dfrac{1}{2\cdot2}< \dfrac{1}{1\cdot2}\)

\(\dfrac{1}{3^2}=\dfrac{1}{3\cdot3}< \dfrac{1}{2\cdot3}\)

\(\dfrac{1}{4^2}=\dfrac{1}{4\cdot4}< \dfrac{1}{3\cdot4}\)

...

\(\dfrac{1}{9^2}=\dfrac{1}{9\cdot9}< \dfrac{1}{8\cdot9}\)

\(\dfrac{1}{10^2}=\dfrac{1}{10\cdot10}< \dfrac{1}{9\cdot10}\)

\(\Rightarrow A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{10^2}< \dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{9\cdot10}\)

\(\Rightarrow A< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{9}-\dfrac{1}{10}\)

\(\Rightarrow A< 1-\dfrac{1}{10}\)

\(\Rightarrow A< \dfrac{9}{10}\)

\(\Rightarrow A< 1\) (vì: \(\dfrac{9}{10}< 1\))

10 tháng 11 2023

132=13⋅3<12⋅3

142=14⋅4<13⋅4

...

192=19⋅9<18⋅9

1102=110⋅10<19⋅10

⇒�=122+132+142+...+1102<11⋅2+12⋅3+13⋅4+...+19⋅10

⇒�<1−12+12−13+...+19−110

⇒�<1−110

⇒�<910

⇒�<1 (vì: 910<1)

 
16 tháng 3 2017

b)B=\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{9^2}\)

B<\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{8.9}\)

B<\(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{8}-\dfrac{1}{9}\)

B<\(1+\left(\dfrac{1}{2}-\dfrac{1}{2}\right)+\left(\dfrac{1}{3}-\dfrac{1}{3}\right)+...+\left(\dfrac{1}{8}+\dfrac{1}{8}\right)-\dfrac{1}{9}\)

B<1-\(\dfrac{1}{9}\)

B<\(\dfrac{8}{9}\)(1)

ta có:

B>\(\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{8.9}+\dfrac{1}{9.10}\)

B>\(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{9}-\dfrac{1}{9}+\dfrac{1}{10}\)

B>\(\dfrac{1}{2}+\left(\dfrac{1}{3}-\dfrac{1}{3}\right)+\left(\dfrac{1}{4}-\dfrac{1}{4}\right)...+\left(\dfrac{1}{9}+\dfrac{1}{9}\right)-\dfrac{1}{10}\)

B>\(\dfrac{1}{2}-\dfrac{1}{10}\)

B>\(\dfrac{2}{5}\)

3 tháng 8 2023

a,a+1/4=2 3/4-1 1/2    

a+1/2=5/4

    a=5/4-1/2

     a=3/4

b,a-7/4=13/4-7/9

a-7/4=89/36

        a= 89/36+7/4

         a=152/36

c,3/2-a=17/6-1/6

3/2-a=8/3

       a= 3/2-8/3

       a= -7/6

25 tháng 7 2018

\(1)\dfrac{1}{5}+\dfrac{2}{30}+\dfrac{121}{156}\le x\le\dfrac{1}{2}+\dfrac{156}{72}+\dfrac{1}{3}\)

\(\dfrac{156}{780}+\dfrac{26}{780}+\dfrac{605}{780}\le x\le\dfrac{3}{6}+\dfrac{13}{6}+\dfrac{2}{6}\)

\(\dfrac{787}{780}\le x\le2\)

\(\Rightarrow x\in\left\{2\right\}\)

Câu 2: 

\(N=\dfrac{2a+9+5a+17-3a-4a-23}{a+3}=\dfrac{3}{a+3}\)

Để N là số tự nhiên thì \(\left\{{}\begin{matrix}a>-3\\a+3\in\left\{1;-1;3;-3\right\}\end{matrix}\right.\Leftrightarrow a\in\left\{-2;0\right\}\)

11 tháng 9 2023

Bài 4: 

a) \(\dfrac{4}{3}+\left(1,25-x\right)=2,25\)

\(1,25-x=2,25-\dfrac{4}{3}=\dfrac{9}{4}-\dfrac{4}{3}\)

\(1,25-x=\dfrac{11}{12}\)

\(x=1,25-\dfrac{11}{12}=\dfrac{5}{4}-\dfrac{11}{12}\)

\(x=\dfrac{1}{3}\)

b) \(\dfrac{17}{6}-\left(x-\dfrac{7}{6}\right)=\dfrac{7}{4}\)

\(x-\dfrac{7}{6}=\dfrac{17}{6}-\dfrac{7}{4}=\dfrac{34}{12}-\dfrac{21}{12}\)

\(x-\dfrac{7}{6}=\dfrac{13}{12}\)

\(x=\dfrac{13}{12}+\dfrac{7}{6}=\dfrac{13}{12}+\dfrac{14}{12}\)

\(x=\dfrac{27}{12}=\dfrac{9}{4}\)

c) \(4-\left(2x+1\right)=3-\dfrac{1}{3}=\dfrac{9}{3}-\dfrac{1}{3}\)

\(4-\left(2x+1\right)=\dfrac{8}{3}\)

\(2x+1=\dfrac{8}{3}+4=\dfrac{8}{3}+\dfrac{12}{3}\)

\(2x+1=\dfrac{20}{3}\)

\(2x=\dfrac{20}{3}-1=\dfrac{20}{3}-\dfrac{3}{3}\)

\(2x=\dfrac{17}{3}\)

\(x=\dfrac{17}{3}.\dfrac{1}{2}=\dfrac{17}{6}\)

Bài 15:

a) \(\left(\dfrac{-2}{3}\right)^9:x=\dfrac{-2}{3}\)

\(x=\left(\dfrac{-2}{3}\right)^9:\dfrac{-2}{3}=\left(\dfrac{-2}{3}\right)^{9-1}\)

\(=>x=\left(\dfrac{-2}{3}\right)^8\)

b) \(x:\left(\dfrac{4}{9}\right)^5=\left(\dfrac{4}{9}\right)^4\)

\(x=\left(\dfrac{4}{9}\right)^4.\left(\dfrac{4}{9}\right)^5=\left(\dfrac{4}{9}\right)^{4+5}\)

\(=>x=\left(\dfrac{4}{9}\right)^9\)

c) \(\left(x+4\right)^3=-125\)

\(\left(x+4\right)^3=\left(-5\right)^3\)

\(=>x+4=-5\)

\(x=-5-4\)

\(=>x=-9\)

d) \(\left(10-5x\right)^3=64\)

\(\left(10-5x\right)^3=4^3\)

\(=>10-5x=4\)

\(5x=10-4\)

\(5x=6\)

\(=>x=\dfrac{6}{5}\)

e) \(\left(4x+5\right)^2=81\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(4x+5\right)^2=\left(-9\right)^2\\\left(4x+5\right)^2=9^2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}4x+5=-9\\4x+5=9\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}4x=-14\\4x=4\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-14}{4}\\x=1\end{matrix}\right.\)

Bài 16:

a) \(4-1\dfrac{2}{5}-\dfrac{8}{3}\)

\(=4-\dfrac{7}{5}-\dfrac{8}{3}\)

\(=\dfrac{60-21-40}{15}=\dfrac{-1}{15}\)

b) \(-0,6-\dfrac{-4}{9}-\dfrac{16}{15}\)

\(=\dfrac{-3}{5}+\dfrac{4}{9}-\dfrac{16}{15}\)

\(=\dfrac{\left(-27\right)+20-48}{45}=\dfrac{-55}{45}=\dfrac{-11}{9}\)

c) \(-\dfrac{15}{4}.\left(\dfrac{-7}{15}\right).\left(-2\dfrac{2}{5}\right)\)

\(=\dfrac{7}{4}.\dfrac{-12}{5}\)

\(=\dfrac{-21}{5}\)

\(#Wendy.Dang\)

 

 

11 tháng 9 2023

Uh, chừa sau k dám học muộn nx