Tìm 2 chữ số tận cùng của : \(829^{145}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
7 chia het cho (2x+1)
ma 7 chia het cho 1;7
=>2x+1=1=>x=0
2x+1=7=>x=3
ket luan x = 0;3
từ từ thôi cái này tốn có 4 câu hỏi thôi mà cho vào 1 câu làm gì
nếu viết thêm chữ số 4 vào bên phải số bé thì số bé sẽ gấp lên 10 lần và thêm 4 đơn vị =>số lớn gấp 10 lần số bé và 4 đơn vị
để số lớn gấp 10 lần số bé thì tổng phải là
829-4=825
giá trị một phần là
825:(10+1)=75
số bé là
75x1=75
số lớn là
75x10+4=754
Ta thấy 145146 là số lẻ nên suy ra\(145^{146}-1=2k\left(k\inℕ\right)\)
Ta có:\(1999^{145^{146}}=1999^{145^{146}-1}\cdot1999\)
\(=1999^{2k}\cdot1999=\left(1999^2\right)^k\cdot1999\)
\(=\left(...1\right)^k\cdot1999=\left(...1\right)\cdot1999=...9\)
Tương tự ta có:\(464^{299^{398}}=...4\)
91=9 ; 92=81 ; 93=729 . Vậy : 9n;n là số lẻ thì số tận cùng là 9 ; n là số chẵn thì số tận cùng là 1 mà 145146 luôn là số lẻ suy ra số tận cùng của câu 1 đó là 9. 41=4 ; 42=16 ; 43=64 . Vậy nếu 4n ; n là số chẵn thì số tận cùng là 4 và nếu n là số lẻ thì số tận cùng là 6 mà 299398 luôn là số lẻ suy ra số tận cùng của câu 2 là 4
Bài 1:
S = 2 x 2 x 2 x 2 x 2 x...x 2 (2023 chữ số 2)
Nhóm 4 thừa số 2 vào một nhóm thì vì:
2023 : 4 = 505 dư 3
Vậy
S = (2x2x2x2) x...x (2 x 2 x 2 x 2) x 2 x 2 x 2 có 503 nhóm (2x2x2x2)
S = \(\overline{..6}\) x ...x \(\overline{..6}\) x 8
S = \(\overline{..6}\) x 8
S = \(\overline{..8}\)
Bài 2:
S = 3 x 13 x 23 x...x 2023
Xét dãy số: 3; 13; 23;..;2023
Dãy số trên là dãy số cách đều với khoảng cách là: 13 - 3 = 10
Số số hạng của dãy số trên là: (2023 - 3):10 + 1 = 203 (số hạng)
Vậy chữ số tận cùng của S bằng chữ số tận cùng của A.
Với A = 3 x 3 x 3 x...x 3 (203 thừa số 3)
Nhóm 4 thừa số 3 thành 1 nhóm, vì 203 : 4 = 50 (dư 3)
A = (3 x 3 x 3 x 3)x...x(3x3x3x3)x3x3x3 có 50 nhóm (3x3x3x3)
A = \(\overline{..1}\) x...x \(\overline{..1}\) x 27
A = \(\overline{..7}\)
1) \(S=2.2.2..2\left(2023.số.2\right)\)
\(\Rightarrow S=2^{2023}=\left(2^{20}\right)^{101}.2^3=\overline{....6}.8=\overline{.....8}\)
2) \(S=3.13.23...2023\)
Từ \(3;13;23;...2023\) có \(\left[\left(2023-3\right):10+1\right]=203\left(số.hạng\right)\)
\(\) \(\Rightarrow S\) có số tận cùng là \(1.3^3=27\left(3^{203}=\left(3^{20}\right)^{10}.3^3\right)\)
\(\Rightarrow S=\overline{.....7}\)
3) \(S=4.4.4...4\left(2023.số.4\right)\)
\(\Rightarrow S=4^{2023}=\overline{.....4}\)
4) \(S=7.17.27.....2017\)
Từ \(7;17;27;...2017\) có \(\left[\left(2017-7\right):10+1\right]=202\left(số.hạng\right)\)
\(\Rightarrow S\) có tận cùng là \(1.7^2=49\left(7^{202}=7^{4.50}.7^2\right)\)
\(\Rightarrow S=\overline{.....9}\)