K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 8 2017

Các tỉ số bằng nhau là:

\(10:15=14:21< =\dfrac{2}{3}>;\dfrac{2}{3}:\dfrac{1}{4}=\dfrac{16}{9}=\dfrac{16}{24}< =\dfrac{8}{3}>;16:\left(-4\right)=12:\left(-3\right)< =-4>;-5:15=-1,2:3,6< =-\dfrac{1}{3}>\)

26 tháng 8 2017

    1. Phương pháp 1: ( Hình 1)

        Nếu  thì ba điểm A; B; C thẳng hàng.

    2. Phương pháp 2: ( Hình 2)

        Nếu AB // a và AC // a thì ba điểm A; B; C thẳng hàng.

       (Cơ sở của phương pháp này là: tiên đề Ơ – Clit- tiết 8- hình 7)

    3. Phương pháp 3: ( Hình 3)

        Nếu AB  a ; AC  A thì ba điểm A; B; C thẳng hàng.

        ( Cơ sở của phương pháp này là: Có một và chỉ một đường thẳng

        a đi qua điểm O và vuông góc với đường thẳng a cho trước

        - tiết 3 hình học 7)

        Hoặc A; B; C cùng thuộc một đường trung trực của một

        đoạn thẳng .(tiết 3- hình 7)

    4. Phương pháp 4: ( Hình 4)

        Nếu tia OA và tia OB là hai tia phân giác của góc xOy

        thì ba điểm O; A; B thẳng hàng.

        Cơ sở của phương pháp này là:                                                        

        Mỗi góc có một và chỉ một tia phân giác .

     * Hoặc : Hai tia OA và OB cùng nằm trên nửa mặt phẳng bờ chứa tia Ox ,

                   thì ba điểm O, A, B thẳng hàng.

    5. Nếu K là trung điểm BD, K là giao điểm của BD và AC. Nếu K

       Là trung điểm BD  thì K  K thì A, K, C thẳng hàng.

      (Cơ sở của phương pháp này là: Mỗi đoạn thẳng chỉ có một trung điểm)

     

C. Các ví dụ minh họa cho tùng phương pháp:

                                                                Phương pháp 1

    Ví dụ 1. Cho tam giác ABC vuông ở A, M là trung điểm AC. Kẻ tia Cx vuông góc CA

                     (tia Cx và điểm B ở hai nửa mặt phẳng đối nhau bờ AC). Trên tia Cx lấy điểm

                     D sao cho CD = AB.

                     Chứng minh ba điểm B, M, D thẳng hàng.

     Gợi ý: Muốn B, M, D thẳng hàng cần chứng minh

               Do nên cần chứng minh

BÀI GIẢI:

               AMB và CMD có:                                                       

                   AB = DC (gt).

                  

                    MA = MC (M là trung điểm AC)                                              

               Do đó: AMB = CMD (c.g.c). Suy ra:

               Mà   (kề bù) nên .

               Vậy ba điểm B; M; D thẳng hàng.

    Ví dụ 2. Cho tam giác ABC. Trên tia đối của AB lấy điểm D mà  AD = AB, trên tia đối

                     tia AC lấy điểm E mà AE = AC. Gọi M; N lần lượt là các điểm trên BC và ED

                      sao cho CM = EN.

                    Chứng minh ba điểm M; A; N thẳng hàng.

Gợi ý: Chứng minh  từ đó suy ra ba điểm M; A; N thẳng hàng.

BÀI GIẢI (Sơ lược)

          ABC = ADE (c.g.c)

          ACM = AEN (c.g.c)

          Mà  (vì ba điểm E; A; C thẳng hàng) nên

Vậy ba điểm M; A; N thẳng hàng (đpcm)

BÀI TẬP THỰC HÀNH CHO PHƯƠNG PHÁP 1

Bài 1: Cho tam giác ABC. Trên tia đối của tia AB lấy điểm D sao cho AD = AC, trên tia đối

          của tia AC lấy điểm E sao cho AE = AB. Gọi M, N lần lượt là trung điểm của BE và

          CD.

          Chứng minh ba điểm M, A, N thẳng hàng.

Bài 2: Cho tam giác ABC vuông ở A có . Vẽ tia Cx  BC (tia Cx và điểm A ở

          phía ở cùng phía bờ BC), trên tia Cx lấy điểm E sao cho CE = CA. Trên tia đối của tia

          BC lấy điểm F sao cho BF = BA.

          Chứng minh ba điểm E, A, F thẳng hàng.

Bài 3: Cho tam giác ABC cân tại A, điểm D thuộc cạnh AB. Trên tia đối của tia CA lấy điểm

          E sao cho CE = BD. Kẻ DH và EK vuông góc với BC (H và K thuộc đường thẳng BC)

          Gọi M là trung điểm HK.

          Chứng minh ba điểm D, M, E thẳng hàng.

Bài 4: Gọi O là trung điểm của đoạn thẳng AB. Trên hai nửa mặt phẳng đối nhau bờ AB, kẻ

          Hai tia Ax và By sao cho .Trên Ax lấy hai điểm C và E(E nằm giữa A và C),

          trên By lấy hai điểm D và F ( F nằm giữa B và D) sao cho AC = BD, AE = BF.

          Chứng minh ba điểm C, O, D thẳng hàng , ba điểm E, O, F thẳng hàng.

Bài 5.Cho tam giác ABC . Qua A vẽ đường thẳng xy // BC. Từ điểm M trên cạnh BC, vẽ các

          đường thẳng song song AB và AC, các đường thẳng này cắt xy theo thứ tự tại D và E.

          Chứng minh các đường thẳng AM, BD, CE cùng đi qua một điểm.

                                                              PHƯƠNG PHÁP 2

    Ví dụ 1: Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của các cạnh AC, AB. Trên

                  Các đường thẳng BM và CN lần lượt lấy các điểm D và E sao cho M là trung  

                 điểm BD và N là trung điểm EC.

                  Chứng minh ba điểm E, A, D thẳng hàng.

Hướng dẫn: Xử dụng phương pháp 2                                            

                  Ta chứng minh AD // BC và AE // BC.

BÀI GIẢI.

                 BMC và DMA có:

                   MC = MA (do M là trung điểm AC)

                    (hai góc đối đỉnh)

                   MB = MD (do M là trung điểm BD)

                  Vậy: BMC = DMA (c.g.c)

                   Suy ra: , hai góc này ở vị trí so le trong nên BC // AD (1)

                   Chứng minh tương tự : BC // AE (2)

                   Điểm A ở ngoài BC có một và chỉ một đường thẳng song song BC nên từ (1)

                   và (2) và theo Tiên đề Ơ-Clit suy ra ba điểm E, A, D thẳng hàng. 

   Ví dụ 2: Cho hai đoạn thẳng  AC và BD cắt nhau tai trung điểm O của mỗi đoạn. Trên tia

                 AB lấy lấy điểm M sao cho B là trung điểm AM, trên tia AD lấy điểm N sao cho

                 D là trung điểm AN. 

26 tháng 8 2017

ban lam j day , mk khong hieu

Bài 1 : Tìm các tỉ số bằng nhau trong các tỉ số sau đây rồi lập các tỉ lệ thức :            10:15     ;    16:(-4)    ;      (-5):15     ;      14:21     ;             \(\dfrac{2}{3}\):\(\dfrac{1}{4}\)      ;    12:(-3)    ;     (-1,2):3,6   ;      \(\dfrac{16}{9}\):\(\dfrac{16}{24}\)  Bài 2 : Lập tất cả các tỉ lệ thức có thể được từ các đẳng thức sau : a) 14 . 15 = 10 . 21                          b) 0,2 . 4,5 = 0,6 . 1,5 Bài 3 : Tìm x biết...
Đọc tiếp

Bài 1 : Tìm các tỉ số bằng nhau trong các tỉ số sau đây rồi lập các tỉ lệ thức :

           10:15     ;    16:(-4)    ;      (-5):15     ;      14:21     ;

            \(\dfrac{2}{3}\):\(\dfrac{1}{4}\)      ;    12:(-3)    ;     (-1,2):3,6   ;      \(\dfrac{16}{9}\):\(\dfrac{16}{24}\) 

Bài 2 : Lập tất cả các tỉ lệ thức có thể được từ các đẳng thức sau :

a) 14 . 15 = 10 . 21                          b) 0,2 . 4,5 = 0,6 . 1,5

Bài 3 : Tìm x biết :

a) \(\dfrac{2}{3}\)x : \(\dfrac{1}{5}\) = \(1\dfrac{1}{3}\) : \(\dfrac{1}{4}\)                          b) 1,35 : 0,2 = 1,25 : 0,1x

c) 3 : \(\dfrac{2}{5}\)x = 1 : 0,01                           d) 2 : \(1\dfrac{1}{4}\) = \(\dfrac{1}{2}\) : 2x

 giúp mình làm 3 bài này với

 

1
26 tháng 7 2023

Bài 1 : Ta thấy

\(\dfrac{10}{15}=\dfrac{2}{3};\dfrac{14}{21}=\dfrac{2}{3}\Rightarrow10:15=14:21\Rightarrow\dfrac{10}{15}=\dfrac{14}{21}\)

\(\dfrac{16}{\left(-4\right)}=-4;\dfrac{12}{\left(-3\right)}=-4\Rightarrow16:\left(-4\right)=12:\left(-3\right)\Rightarrow\dfrac{16}{\left(-4\right)}=\dfrac{12}{\left(-3\right)}=-4\)

\(\dfrac{\left(-5\right)}{15}=\dfrac{\left(-1,2\right)}{3,6}=-\dfrac{1}{3}\Rightarrow\left(-5\right):15=\left(-1,2\right):3,6\)

\(\dfrac{2}{3}:\dfrac{1}{4}=\dfrac{2}{3}.4=\dfrac{8}{3};\dfrac{16}{9}:\dfrac{16}{24}=\dfrac{16}{9}.\dfrac{24}{16}=\dfrac{8}{3}\)

\(\Rightarrow\left(\dfrac{2}{3}:\dfrac{1}{4}\right)=\left(\dfrac{16}{9}:\dfrac{16}{24}\right)=\dfrac{8}{3}\)

Bài 2 :

a) \(14.15=10.21\Rightarrow\dfrac{14}{10}=\dfrac{21}{15}=\dfrac{7}{5}\)

b) \(0,2.4,5=0,6.1,5\Rightarrow\dfrac{0,2}{0,6}=\dfrac{1,5}{4,5}=\dfrac{1}{3}\)

3 tháng 7 2018

tỉ lệ thức lập ra từ 4 số: 4,5,12,15

\({4 \over 5}={12 \over 15}\) ; \({ 4 \over 12}={5 \over 15}\)\({5 \over 4}={15 \over 12}\) ;\({12 \over 4}={15 \over 5}\)

3 tháng 7 2018

bạn Ngự thủy sư trình bày đầy đủ hộ mik đc k

27 tháng 6 2019

Ta có:

Giải bài 45 trang 26 Toán 7 Tập 1 | Giải bài tập Toán 7

Nhìn vào kết quả trên ta lập được các tỉ lệ thức:

Giải bài 45 trang 26 Toán 7 Tập 1 | Giải bài tập Toán 7

29 tháng 5 2016

Khó quá 

3 tháng 5 2023

\(a,5:20=\dfrac{5}{20}=\dfrac{1}{4}\\ 0,3: 0,9=\dfrac{3}{10}:\dfrac{9}{10}=\dfrac{3}{10}\times\dfrac{10}{9}=\dfrac{3}{9}=\dfrac{1}{3}\\ \dfrac{1}{3}:\dfrac{4}{3}=\dfrac{1}{3}\times\dfrac{3}{4}=\dfrac{1}{4}\)

Từ đó ta có 

\(\dfrac{5}{20}=\dfrac{1}{3}:\dfrac{4}{3}=\dfrac{1}{4}\)