K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 9 2017

\(\left|2x-\dfrac{1}{2}\right|+\dfrac{3}{7}=5\dfrac{3}{7}\)

<=> \(\left|2x-\dfrac{1}{2}\right|=5\)

<=> \(\left\{{}\begin{matrix}2x-\dfrac{1}{2}=5\\2x-\dfrac{1}{2}=-5\end{matrix}\right.\)

<=> \(\left\{{}\begin{matrix}2x=\dfrac{11}{2}\\2x=-\dfrac{9}{2}\end{matrix}\right.\)

<=> \(\left\{{}\begin{matrix}x=\dfrac{11}{4}\\x=-\dfrac{9}{4}\end{matrix}\right.\)

Do x < 0 => x = \(-\dfrac{9}{4}\)

7 tháng 9 2017

Giải:

\(\left|2x-\dfrac{1}{2}\right|+\dfrac{3}{7}=5\dfrac{3}{7}\)

\(\Leftrightarrow\left|2x-\dfrac{1}{2}\right|=5\dfrac{3}{7}-\dfrac{3}{7}\)

\(\Leftrightarrow\left|2x-\dfrac{1}{2}\right|=4\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-\dfrac{1}{2}=4\\2x-\dfrac{1}{2}=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=\dfrac{9}{2}\\2x=-\dfrac{7}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{9}{4}\\x=-\dfrac{7}{4}\end{matrix}\right.\)

Mà x < 0

Nên \(x=-\dfrac{7}{4}\)

Vậy \(x=-\dfrac{7}{4}\).

Chúc bạn học tốt!

7 tháng 9 2017

\(\left|2x-\frac{1}{2}\right|+\frac{3}{7}=5\frac{3}{7}\)

\(\left|2x-\frac{1}{2}\right|=\frac{38}{7}-\frac{3}{7}\)

\(\left|2x-\frac{1}{2}\right|=5\)

Ta xét hai trường hợp:

TH1: \(2x-\frac{1}{2}=5\)

2x = 5 + 1/2

2x = 11/2

x = 11/2 : 2

x = 11/4 (loại vì x < 0)

TH2: 2x - 1/2 = -5

2x = -5 + 1/2

2x = -9/2

x = -9/2:2

x = -9/4 (chọn)

Vậy x = -9/4

7 tháng 9 2017

\(\left|2x-\frac{1}{2}\right|+\frac{3}{7}=5\frac{3}{7}\)

\(\left|2x-\frac{1}{2}\right|=5\frac{3}{7}-\frac{3}{7}=5\)

\(\Rightarrow\orbr{\begin{cases}2x-\frac{1}{2}=5\\2x-\frac{1}{2}=-5\end{cases}}\Rightarrow\orbr{\begin{cases}2x=\frac{11}{2}\\2x=\frac{-9}{2}\end{cases}\Rightarrow\orbr{\begin{cases}x=11\\x=-9\end{cases}}}\)

\(x=-9\)

A= 4/7.

Biết có cái

14 tháng 3 2022

ko biết mk làm có đúng ko nhma có gì sai thì đừng trách mk nhé

\(7\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)\ge\dfrac{63}{a^2+b^2+c^2}\)

\(6\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{a}{ac}\right)+2021\ge\dfrac{54}{ab+bc+ac}+2021\ge\dfrac{54}{a^2+b^2+c^2}+2021\)

<=>\(\dfrac{1}{a^2+b^2+c^2}\ge\dfrac{2021}{9}\)

\(p^2=\left(\dfrac{1}{\sqrt{3\left(2a^2+b^2\right)}}+\dfrac{1}{\sqrt{3\left(2b^2+c^2\right)}}+\dfrac{1}{\sqrt{3\left(2c^2+a^2\right)}}\right)^2\)

áp dụng bđt \(a^2+b^2+c^2\ge\dfrac{1}{3}\left(a+b+c\right)^2\)

\(p^2\le3.\left(\dfrac{1}{3\left(2a^2+b^2\right)}+\dfrac{1}{3\left(2b^2+c^2\right)}+\dfrac{1}{3\left(2c^2+a^2\right)}\right)=\dfrac{1}{2a^2+b^2}+\dfrac{1}{2b^2+c^2}+\dfrac{1}{2c^2+a^2}\)

\(< =>p^2\le\dfrac{9}{2a^2+b^2+2b^2+c^2+2c^2+a^2}\)

<=> \(p^2\le3.\dfrac{1}{a^2+b^2+c^2}=\dfrac{2021}{3}< =>p\le\sqrt{\dfrac{2021}{3}}\)

dấu bằng xảy ra khi \(a=b=c=\sqrt{\dfrac{3}{2021}}\)

NV
15 tháng 3 2022

\(7\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)=6\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ac}\right)+2021\le6\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)+2021\)

\(\Rightarrow2021\ge\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\ge\dfrac{1}{3}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2\)

\(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\le\sqrt{2021.3}=\sqrt{6063}\)

Từ đó:

\(\sqrt{3\left(2a^2+b\right)}=\sqrt{\left(2+1\right)\left(2a^2+b^2\right)}\ge\sqrt{\left(2a+b\right)^2}=2a+b\)

\(\Rightarrow\dfrac{1}{\sqrt{3\left(2a^2+b^2\right)}}\le\dfrac{1}{2a+b}=\dfrac{1}{a+a+b}\le\dfrac{1}{9}\left(\dfrac{2}{a}+\dfrac{1}{b}\right)\)

Tương tự: \(\dfrac{1}{\sqrt{3\left(2b^2+c^2\right)}}\le\dfrac{1}{9}\left(\dfrac{2}{b}+\dfrac{1}{c}\right)\) ; \(\dfrac{1}{\sqrt{3\left(2c^2+a^2\right)}}\le\dfrac{1}{9}\left(\dfrac{2}{c}+\dfrac{1}{a}\right)\)

Cộng vế:

\(\Rightarrow P\le\dfrac{1}{9}\left(\dfrac{3}{a}+\dfrac{3}{b}+\dfrac{3}{c}\right)=\dfrac{1}{3}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\le\dfrac{\sqrt{6063}}{3}\)

\(P_{max}=\dfrac{\sqrt{6063}}{3}\) khi \(a=b=c=\dfrac{3}{\sqrt{6063}}\)

4 tháng 2 2021

\(f\left(-1\right)=2\Rightarrow-a+b-c+d=2\\ f\left(0\right)=1\Rightarrow d=1\\ f\left(1\right)=7\Rightarrow a+b+c+d=7\\ f\left(\dfrac{1}{2}\right)=3\Rightarrow\dfrac{1}{8}a+\dfrac{1}{4}b+\dfrac{1}{2}c+d=3\)

\(d=1\Rightarrow-a+b-c=1;a+b+c=6\\ \Rightarrow2b=7\\ \Rightarrow b=\dfrac{7}{2}\\ \Rightarrow\dfrac{1}{8}a+\dfrac{7}{8}+\dfrac{1}{2}c=2\\ \Rightarrow\dfrac{1}{2}\left(\dfrac{1}{4}a+\dfrac{7}{4}+c\right)=2\\ \Rightarrow\dfrac{1}{4}a+\dfrac{7}{4}+c=4\\ \Rightarrow a+7+4c=16\\ \Rightarrow a+4c=9;a+c=6-\dfrac{7}{2}=\dfrac{5}{2}\\ \Rightarrow3c=\dfrac{13}{2}\Rightarrow c=\dfrac{13}{6}\\ \Rightarrow a=\dfrac{5}{2}-\dfrac{13}{6}=\dfrac{1}{3}\)

Vậy \(\left(a;b;c;d\right)=\left(\dfrac{1}{3};\dfrac{7}{2};\dfrac{13}{6};1\right)\)

9 tháng 11 2021

\(1,\Leftrightarrow\left[{}\begin{matrix}2x-1=5\\1-2x=5\end{matrix}\right.\Leftrightarrow D\\ 2,\Leftrightarrow\left(-3\right)^x=-27\cdot81=-2187=\left(-3\right)^7\\ \Leftrightarrow x=7\left(A\right)\)

9 tháng 11 2021

1.D

2.A

1:

a: =7/5(40+1/4-25-1/4)-1/2021

=21-1/2021=42440/2021

b: =5/9*9-1*16/25=5-16/25=109/25

29 tháng 1 2022

Chia nhỏ ra

a: =>1/2x=7/2-2/3=21/6-4/6=17/6

=>x=17/3

b: =>2/3:x=-7-1/3=-22/3

=>x=2/3:(-22/3)=-1/11

c: =>1/3x+2/5x-2/5=0

=>11/15x=2/5

hay x=6/11

d: =>2x-3=0 hoặc 6-2x=0

=>x=3/2 hoặc x=3

a) Ta có: \(M=\left(\dfrac{\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\right)\cdot\dfrac{x+3\sqrt{x}}{7-\sqrt{x}}\)

\(=\left(\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}-\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\right)\cdot\dfrac{x+3\sqrt{x}}{7-\sqrt{x}}\)

\(=\dfrac{x-9-\left(x-2\sqrt{x}+\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{-\left(\sqrt{x}-7\right)}\)

\(=\dfrac{x-9-x+\sqrt{x}+2}{\sqrt{x}-2}\cdot\dfrac{-\sqrt{x}}{\sqrt{x}-7}\)

\(=\dfrac{\sqrt{x}-7}{\sqrt{x}-2}\cdot\dfrac{-\sqrt{x}}{\sqrt{x}-7}\)

\(=\dfrac{-\sqrt{x}}{\sqrt{x}-2}\)

b) Ta có: \(x^2-4x=0\)

\(\Leftrightarrow x\left(x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(nhận\right)\\x=4\left(loại\right)\end{matrix}\right.\)

Thay x=0 vào biểu thức \(M=\dfrac{-\sqrt{x}}{\sqrt{x}-2}\), ta được:

\(M=\dfrac{-\sqrt{0}}{\sqrt{0}-2}=-\dfrac{0}{-2}=0\)

Vậy: Khi \(x^2-4x=0\) thì M=0