K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 9 2017

MIK NHẦM

A=\(-\dfrac{3000}{20000}-\dfrac{300}{20000}-\dfrac{30}{20000}-\dfrac{3}{20000}\)

A=\(-\dfrac{3333}{20000}\)

ĐÂY MỚI LÀ ĐÚNG NÈ, NHỚ TICK NHAvui

26 tháng 9 2017

A= \(\dfrac{3333}{20000}\)

26 tháng 9 2017

\(=7-\dfrac{4}{3}+\dfrac{1}{3}-6-\dfrac{5}{4}+\dfrac{4}{3}-5+\dfrac{7}{4}-\dfrac{5}{3}\)

\(=\left(7-6-5\right)-\left(\dfrac{4}{3}-\dfrac{4}{3}+\dfrac{5}{3}-\dfrac{1}{3}\right)-\left(\dfrac{5}{4}-\dfrac{7}{4}\right)\)

\(=-4-\dfrac{4}{3}-\left(\dfrac{-1}{2}\right)\)

\(=-4-\dfrac{4}{3}+\dfrac{1}{2}\)

\(=-\dfrac{24}{6}-\dfrac{8}{6}+\dfrac{3}{6}\)

\(=-\dfrac{32}{6}+\dfrac{3}{6}\)

\(=-\dfrac{29}{6}\)

3 tháng 4 2017

\(\dfrac{1}{12}\). \(\dfrac{37}{39}+\dfrac{1}{12}.\dfrac{2}{39}+\dfrac{1}{4}\)

=\(\dfrac{1}{12}.\left(\dfrac{37}{39}+\dfrac{2}{39}\right)+\dfrac{1}{4}\)

=\(\dfrac{1}{12}.1+\dfrac{1}{4}\)

=\(\dfrac{13}{12}+\dfrac{1}{4}\)

=\(\dfrac{16}{12}\)

\(=\left(\dfrac{4}{12}-\dfrac{3}{12}\right)^2+\left(\dfrac{3}{6}-\dfrac{1}{6}\right)^2+\dfrac{4}{3}\)

\(=\dfrac{1}{144}+\dfrac{1}{9}+\dfrac{4}{3}=\dfrac{209}{144}\)

1: \(=\dfrac{16}{15}\left(-\dfrac{4}{9}+\dfrac{3}{7}\right)+\dfrac{16}{15}\left(\dfrac{4}{7}-\dfrac{5}{9}\right)\)

\(=\dfrac{16}{15}\left(-\dfrac{4}{9}+\dfrac{3}{7}+\dfrac{4}{7}-\dfrac{5}{9}\right)=0\)

2: \(=\dfrac{29}{9}\left(15+\dfrac{4}{7}-8-\dfrac{1}{7}+\dfrac{15}{7}-\dfrac{1}{7}\right)\)

\(=\dfrac{20}{9}\cdot\left(7\cdot\dfrac{18}{7}\right)=\dfrac{20}{9}\cdot18=40\)

24 tháng 7 2017

2)

\(2+\dfrac{5}{7}+\left(\dfrac{\dfrac{3}{19}+\dfrac{3}{23}-\dfrac{3}{28}}{\dfrac{5}{19}+\dfrac{5}{23}-\dfrac{5}{28}}\right)\cdot x=\dfrac{20}{7}\\ \left[\dfrac{3\cdot\left(\dfrac{1}{19}+\dfrac{1}{23}-\dfrac{1}{28}\right)}{5\cdot\left(\dfrac{1}{19}+\dfrac{1}{23}-\dfrac{1}{28}\right)}\right]\cdot x=\dfrac{20}{7}-\dfrac{5}{7}-2\\ \dfrac{3}{5}x=\dfrac{15}{7}-2\\ \dfrac{3}{5}x=\dfrac{1}{7}\\ x=\dfrac{5}{21}\)

25 tháng 3 2017

\(\dfrac{\dfrac{2}{5}+\dfrac{2}{7}-\dfrac{2}{11}}{\dfrac{3}{5}+\dfrac{3}{7}-\dfrac{3}{11}}+\dfrac{\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{7}}{\dfrac{3}{4}-\dfrac{3}{5}+\dfrac{3}{7}}=\dfrac{2\left(\dfrac{1}{5}+\dfrac{1}{7}-\dfrac{1}{11}\right)}{3\left(\dfrac{1}{5}+\dfrac{1}{7}-\dfrac{1}{11}\right)}+\dfrac{\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{7}}{3\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{7}\right)}\)

\(=\dfrac{2}{3}+\dfrac{1}{3}\)

\(=1\)

25 tháng 3 2017

\(=\dfrac{\dfrac{1}{3}-\dfrac{1}{7}-\dfrac{1}{13}}{2.\left(\dfrac{1}{3}-\dfrac{1}{7}-\dfrac{1}{13}\right)}.\dfrac{3.\left(\dfrac{1}{4}-\dfrac{1}{16}-\dfrac{1}{64}-\dfrac{1}{264}\right)}{\dfrac{1}{4}-\dfrac{1}{16}-\dfrac{1}{64}-\dfrac{1}{264}}\)

\(=\dfrac{1}{2}.3=\dfrac{3}{2}\)

15 tháng 7 2017

Edogawa Conan !hình như là thiếu

BT1: CMR: a) \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{n^2}< 1\) b) \(\dfrac{1}{4}+\dfrac{1}{16}+\dfrac{1}{36}+\dfrac{1}{64}+\dfrac{1}{100}+\dfrac{1}{144}+\dfrac{1}{196}< \dfrac{1}{2}\) c) \(\dfrac{1}{3}+\dfrac{1}{30}+\dfrac{1}{32}+\dfrac{1}{35}+\dfrac{1}{45}+\dfrac{1}{47}+\dfrac{1}{50}< \dfrac{1}{2}\) d) \(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{8}-\dfrac{1}{16}+\dfrac{1}{32}-\dfrac{1}{64}< \dfrac{1}{3}\) e) \(\dfrac{1}{3}< \dfrac{2}{3^2}+\dfrac{3}{3^3}-\dfrac{4}{3^4}+...+\dfrac{99}{3^{99}}-\dfrac{100}{3^{100}}< \dfrac{3}{16}\) f) \(\dfrac{1}{41}+\dfrac{1}{42}+\dfrac{1}{43}+...+\dfrac{1}{79}+\dfrac{1}{80}>\dfrac{7}{12}\) BT2: Tính tổng a) A=\(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{100}}\) b) E=\(1+\dfrac{1}{2}\left(1+2\right)+\dfrac{1}{3}\left(1+2+3\right)+\dfrac{1}{4}\left(1+2+3+4\right)+...+\dfrac{1}{200}\left(1+2+3+...+200\right)\) BT3: Cho S=\(\dfrac{3}{10}+\dfrac{3}{11}+\dfrac{3}{12}+\dfrac{3}{13}+\dfrac{3}{14}\) CMR: 1 < S <...
Đọc tiếp

BT1: CMR:

a) \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{n^2}< 1\)

b) \(\dfrac{1}{4}+\dfrac{1}{16}+\dfrac{1}{36}+\dfrac{1}{64}+\dfrac{1}{100}+\dfrac{1}{144}+\dfrac{1}{196}< \dfrac{1}{2}\)

c) \(\dfrac{1}{3}+\dfrac{1}{30}+\dfrac{1}{32}+\dfrac{1}{35}+\dfrac{1}{45}+\dfrac{1}{47}+\dfrac{1}{50}< \dfrac{1}{2}\)

d) \(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{8}-\dfrac{1}{16}+\dfrac{1}{32}-\dfrac{1}{64}< \dfrac{1}{3}\)

e) \(\dfrac{1}{3}< \dfrac{2}{3^2}+\dfrac{3}{3^3}-\dfrac{4}{3^4}+...+\dfrac{99}{3^{99}}-\dfrac{100}{3^{100}}< \dfrac{3}{16}\)

f) \(\dfrac{1}{41}+\dfrac{1}{42}+\dfrac{1}{43}+...+\dfrac{1}{79}+\dfrac{1}{80}>\dfrac{7}{12}\)

BT2: Tính tổng

a) A=\(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{100}}\)

b) E=\(1+\dfrac{1}{2}\left(1+2\right)+\dfrac{1}{3}\left(1+2+3\right)+\dfrac{1}{4}\left(1+2+3+4\right)+...+\dfrac{1}{200}\left(1+2+3+...+200\right)\)

BT3: Cho S=\(\dfrac{3}{10}+\dfrac{3}{11}+\dfrac{3}{12}+\dfrac{3}{13}+\dfrac{3}{14}\)

CMR: 1 < S < 2

1
22 tháng 3 2017

bài này có trong sách Nâng cao và Phát triển bạn nhé

13 tháng 4 2017

\(B=\dfrac{3}{2}\times\dfrac{4}{3}\times\dfrac{5}{4}\times...\times\dfrac{100}{99}\)

\(B=\dfrac{3.4.5.....100}{2.3.4.....99}\)

\(B=\dfrac{100}{2}\)

\(B=50\)