CMR: \(n^6+n^4-2n^2\) chia hết cho 72 \(\forall n\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(n^2\left(n+1\right)+2n\left(n+1\right)=n\left(n+1\right)\left(n+2\right)\)
Vì n(n+1)(n+2) là tích của 3 số tự nhiên liên tiếp nên chia hết cho cả 2 và 3 . Mà (2,3) = 1 nên n(n+1)(n+2) chia hết cho 6.
Từ đó có đpcm
\(n^2\left(n+1\right)+2n\left(n+1\right)=n\left(n+1\right)\left(n+2\right)⋮6\)
=>đpcm
ặt A = n^6 + n^4 – 2n^2 = n^2 (n^4 + n^2 – 2)
= n^2 (n^4 – 1 + n^2 – 1)
= n^2 [(n^2 – 1)(n^2 + 1) + n^2 – 1]
= n^2 (n^2 – 1)(n^2 + 2)
= n.n.(n – 1)(n + 1)(n^2 + 2)
+ Nếu n chẳn ta có n = 2k (k thuộc N)
A = 4k^2 (2k – 1)(2k + 1)(4k^2 + 2) = 8k^2 (2k – 1)(2k + 1)(2k^2 + 1)
Suy ra A chia hết cho 8
+ Nếu n lẻ ta có n = 2k + 1 (k thuộc N)
A = (2k + 1)^2 . 2k (2k + 2)(4k^2 + 4k + 1 + 2)
= 4k(k + 1)(2k + 1)^2 (4k^2 + 4k + 3)
k(k + 1) chia hết cho 2 vì là tích hai số liên tiếp
Suy ra A chia hết cho 8
Do đó A chia hết cho 8 với mọi n thuộc N
* Nếu n chia hết cho 3 thì A chia hết cho 9. Nên A chia hết cho 72.
* Nếu n không chia hết cho 3 thì n^2 là số chính phương nên chia 3 dư 1 (vì số chính phương chia 3 chỉ dư 0 hoặc 1).
Suy ra n^2 + 2 chia hết cho 3. Mà n (n – 1)(n + 1) là tích 3 số liên tiếp nên có số chia hết cho 3. Suy ra A chia hết cho 9. Do đó A chia hết cho 72.
Vậy A chia hết cho 72 với mọi n thuộc N.
Đặt A = n^6 + n^4 – 2n^2 = n^2 (n^4 + n^2 – 2)
= n^2 (n^4 – 1 + n^2 – 1)
= n^2 [(n^2 – 1)(n^2 + 1) + n^2 – 1]
= n^2 (n^2 – 1)(n^2 + 2)
= n.n.(n – 1)(n + 1)(n^2 + 2)
+ Nếu n chẳn ta có n = 2k (k thuộc N)
A = 4k^2 (2k – 1)(2k + 1)(4k^2 + 2) = 8k^2 (2k – 1)(2k + 1)(2k^2 + 1)
Suy ra A chia hết cho 8
+ Nếu n lẻ ta có n = 2k + 1 (k thuộc N)
A = (2k + 1)^2 . 2k (2k + 2)(4k^2 + 4k + 1 + 2)
= 4k(k + 1)(2k + 1)^2 (4k^2 + 4k + 3)
k(k + 1) chia hết cho 2 vì là tích hai số liên tiếp
Suy ra A chia hết cho 8
Do đó A chia hết cho 8 với mọi n thuộc N
* Nếu n chia hết cho 3 thì A chia hết cho 9. Nên A chia hết cho 72.
* Nếu n không chia hết cho 3 thì n^2 là số chính phương nên chia 3 dư 1 (vì số chính phương chia 3 chỉ dư 0 hoặc 1).
Suy ra n^2 + 2 chia hết cho 3. Mà n (n – 1)(n + 1) là tích 3 số liên tiếp nên có số chia hết cho 3. Suy ra A chia hết cho 9. Do đó A chia hết cho 72.
Vậy A chia hết cho 72 với mọi n thuộc N.
A=n*6 + n*4 -2n²=n².(n-1)(n+1)(n²+2)
-Nếu n chia hết cho 3 =>A chia hết cho 9
-Nếu n chia 3 dư 1 =>n-1 và n²+2 chia hết cho 3=> A chia hết cho 9
-Nếu n chia 3 dư 2=>n+1 và n²+2 chia hết cho 3=>A chia hết cho 9
do đó A chia hết cho 9 (1)
-Nếu n chia hết cho 2=>n² chia hết cho 4 và n²+2 chia hết cho 2=>A chia hết cho8
-Nếu n không chia hết cho 2=> trong 2 số n-1 và n+1 có 1 số chia hết cho 2 và 1 số chia hết cho 4=>A chia hết cho8
do đó, A chia hết cho 8 (2)
từ (1) và (2) => A chia hết cho 72
k cho mk nha
Áp dụng tính chất : a^n - b^n chia hết cho a - b thì :
4^2n+2 - 1 = 4^2.(n+1) - 1 = (4^2)^n+1 - 1 = 16^n+1 - 1^n+1 chia hết cho 16-1 = 15
=> ĐPCM
Áp dụng tính chất : a^n - b^n chia hết cho a - b thì :
4^2n+2 - 1 = 4^2.(n+1) - 1 = (4^2)^n+1 - 1 = 16^n+1 - 1^n+1 chia hết cho 16-1 = 15
=> ĐPCM
Tk mk nha
Đặt \(Q=n^6+n^4-2n^2\)
\(\Rightarrow Q=n^2\left(n^4+n^2-2\right)\)
\(=n^2\left[\left(n^4-1\right)+\left(n^2-1\right)\right]\)
\(=n^2\left[\left(n^2-1\right)\left(n^2+1\right)+\left(n^2-1\right)\right]\)
\(=n^2\left(n^2-1\right)\left(n^2+2\right)\)
\(=n\cdot n\left(n+1\right)\left(n-1\right)\left(n^2+2\right)\)
* Nếu n chẵn. Đặt n = 2k (với k thuộc Z)
\(\Rightarrow Q=4k^2\left(2k+1\right)\left(2k-1\right)\left(4k^2+2\right)\)
\(=4k^2\left(2k-1\right)\left(2k+1\right)\cdot2\left(2k^2+1\right)\)
\(=8k^2\left(2k^2+1\right)\left(2k+1\right)\left(2k-1\right)⋮8\)
* Nếu n lẻ. Đặt n = 2k+1 (với k thuộc Z)
\(\Rightarrow\)\(Q = (2k + 1)^2 .2k (2k + 2)(4k^2 + 4k + 1 + 2) \)
\(= 4k(k + 1)(2k + 1)^2 (4k^2 + 4k + 3) \)
Vì \(k\left(k+1\right)⋮2\) \(\Rightarrow Q⋮8\)
Vậy \(Q⋮8\)
** Nếu \(n⋮3\)
\(\Rightarrow n^2⋮9\Rightarrow Q⋮9\)
** Nếu \(n⋮̸3\)
Vì \(\left(n-1\right)n\left(n+1\right)⋮3\)
Mà \(n⋮̸3\Rightarrow n^2+2⋮3\)
\(\Rightarrow Q⋮9\)
Có \(\left(8;9\right)=1\Rightarrow Q⋮72\)