Cho hình vuông abcd có cạnh =4cm. Trên BC, CD lấy M,N sao cho gọc MAN =45 độ. Qua A kẻ đường thẳng vuông góc với AM cắt CD tại E. CMR
a. Tam giác AME vuông cân
b. Tính chu vi tam giác CMN
giup mình với :(
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
https://www.slideshare.net/PhamNguyenThucLinh/hc-sinh-gii-hnh-hc-8
e, Gọi H là giao của MF , ME . Chú Minh MH.MF + NH.NF = CC^2 + CM^2
a: Xét ΔADM vuông tại D và ΔAHM vuông tại H có
AM chung
\(\widehat{DMA}=\widehat{HMA}\)
Do đó: ΔADM=ΔAHM
=>AD=AH
mà AD=AB
nên AH=AB
b: Xét ΔAHN vuông tại H và ΔABN vuông tại B có
AN chung
AH=AB
Do đó: ΔAHN=ΔABN
c: \(\widehat{MAN}=\widehat{MAH}+\widehat{NAH}\)
\(=\dfrac{1}{2}\left(\widehat{DAH}+\widehat{BAH}\right)\)
\(=\dfrac{1}{2}\cdot90^0=45^0\)
câu a ta có : <MAE = 90
suy ra tam giác MAE là tam giác vuông :< AME + <MEA = 90 ĐỘ ( đ/lí tổng 3 góc áp dụng vào tam giác vuông )
gọi n là giao điểm của EH và CD
vì <MND =90 độ suy ra <NMD +<MPN=90độ
vì cùng phụ nhau với < m suy ra <MEA =<MDN
xét tam giác ACD và tam giác AME :
AD =AE (GT)
<MEA=<MDN (cmt)
<CAD =<MAE =90độ (do AC vuông góc với MB )
SUY RA TAM GIÁC ACD = TAM GIÁC AME(G.C.G)
:A
Trên tia đối của tia DC lấy E sao cho DE=BM
Xét ΔABM vuông tại B và ΔADE vuông tại D có
AB=AD
BM=DE
=>ΔABM=ΔADE
=>AM=AE
góc BAM+góc MAN+góc NAD=góc BAD=90 độ
=>góc BAM+góc NAD=45 độ
=>góc EAN=45 độ
Xét ΔEAN và ΔMAN có
AE=AM
góc EAN=góc MAN
AN chung
=>ΔEAN=ΔMAN
=>EN=MN
C CMN=CM+MN+CN
=CM+MN+CN
=CM+ED+DN+CN
=CM+BM+DN+CN
=BC+CD=1/2*C ABCD